首页> 外文期刊>Journal of Materials Research >On-chip tensile testing of nanoscale silicon free-standing beams
【24h】

On-chip tensile testing of nanoscale silicon free-standing beams

机译:纳米级硅自支撑梁的片上拉伸测试

获取原文
获取原文并翻译 | 示例
           

摘要

Nanomechanical testing of silicon is primarily motivated toward characterizing scale effects on the mechanical behavior. "Defect-free" nanoscale silicon additionally offers a road to large deformation permitting the investigation of transport characteristics and surface instabilities of a significantly perturbed atomic arrangement. The need for developing simple and generic characterization tools to deform free-standing silicon beams down to the nanometer scale, sufficiently equipped to investigate both the mechanical properties and the carrier transport under large strains, has been met in this research through the design of a versatile lab-on-chip. The original on-chip characterization technique has been applied to monocrystalline Si beams produced from Silicon-on-Insulator wafers. The Young's modulus was observed to decrease from 160 GPa down to 108 GPa when varying the thickness from 200 down to 50 nm. The fracture strain increases when decreasing the volume of the test specimen to reach 5% in the smallest samples. Additionally, atomic force microscope-based characterizations reveal that the surface roughness decreases by a factor of 5 when deforming by 2% the Si specimen. Proof of concept transport measurements were also performed under deformation up till 3.5% on 40-nm-thick lightly p-doped silicon beams.
机译:硅的纳米力学测试主要是为了表征尺度对机械行为的影响。 “无缺陷”的纳米级硅还为大变形提供了一条道路,从而允许研究明显扰动的原子排列的传输特性和表面不稳定性。这项研究通过通用设计,满足了开发简单通用的表征工具以将独立的硅束变形至纳米级的要求,该器件足以研究机械性能和大应变下的载流子传输。芯片实验室。原始的片上表征技术已应用于从绝缘体上硅晶片产生的单晶硅束。当厚度从200降低到50 nm时,杨氏模量从160 GPa降低到108 GPa。当最小化样品中试样的体积减小到5%时,断裂应变会增加。此外,基于原子力显微镜的特征表明,当使Si试样变形2%时,表面粗糙度降低5倍。还对40nm厚的轻p掺杂硅束进行了变形直至3.5%的概念传输测量。

著录项

  • 来源
    《Journal of Materials Research》 |2012年第3期|p.571-579|共9页
  • 作者单位

    Research Center in Micro and Nanoscopic Materials and Electronic Devices, Universite Catholique de Louvain,B-1348 Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium;

    Research Center in Micro and Nanoscopic Materials and Electronic Devices, Universite Catholique de Louvain,B-1348 Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium;

    Research Center in Micro and Nanoscopic Materials and Electronic Devices, Universite Catholique de Louvain,B-1348 Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium;

    Newcastle University, School of Electrical, Electronic & Computer Engineering, NE1 7RU, Newcastle upon Tyne,United Kingdom;

    Newcastle University, School of Electrical, Electronic & Computer Engineering, NE1 7RU, Newcastle upon Tyne,United Kingdom;

    Institute of Mechanics, Materials and Civil Engineering, Universite Catholique de Louvain,B-1348 Louvain-la-Neuve, Belgium Research Center in Micro and Nanoscopic Materials and Electronic Devices,Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium;

    Research Center in Micro and Nanoscopic Materials and Electronic Devices, Universite Catholique de Louvain,B-1348 Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号