首页> 外文学位 >A High-Speed Low-Power Modulo 2(n)+1 Multiplier Design Using Carbon-Nanotube Technology.
【24h】

A High-Speed Low-Power Modulo 2(n)+1 Multiplier Design Using Carbon-Nanotube Technology.

机译:使用碳纳米管技术的高速低功耗模2(n)+1乘法器设计。

获取原文
获取原文并翻译 | 示例

摘要

Modulo 2n+1 multiplier is one of the critical components in the area of digital signal processing, residue arithmetic, and data encryption that demand high-speed and low-power operation. In this thesis, a new circuit implementation of a high-speed low-power modulo 2n+1 multiplier is proposed. It has three major stages: partial product generation stage, partial product reduction stage, and the final adder stage. The major technical contribition to the arts of the thesis is that the partial product reduction stage introduces a new MUX-based compressor to reduce power and increase speed. Secondly, in the final adder stage, the sparse-tree based inverted end-around-carry adder reduces the number of critical path circuit blocks. Finally, a proposed adder is implemented using both 32nm CNTFET (Carbon-Nanotube FET) and bulk CMOS technology for comparison. The CNTFET-based design dramatically decreases the PDP (Power Delay Product) of the circuit. The simulation results demonstrate that the MUX-based compressor reduces the PDP of the partial product reduction stage by 4.24 times compare to the traditional full adder based design. The sparse-architecture solves the wire interconnection problem while slightly reduces the PDP of the final adder stage compare to the Kogge-Stone design. The power consumption of CNTFET-based multiplier is on average of 5.72 times less than its conventional bulk CMOS counterpart, while the PDP of CNTFET is 94 times less than the CMOS one. The proposed multilier circuit and its implementation demonstrates the viability of the ultra-low-power and high performance feature of the promising CNTFET technology.
机译:模2n + 1乘法器是数字信号处理,余数运算和数据加密领域中要求高速和低功耗操作的关键组件之一。本文提出了一种高速低功耗模2n + 1乘法器的新电路实现方案。它具有三个主要阶段:部分产品生成阶段,部分产品还原阶段和最终加法器阶段。对本领域技术的主要技术贡献在于,部分产品减少阶段引入了一种新的基于MUX的压缩机,以降低功率并提高速度。其次,在最后的加法器阶段,基于稀疏树的反向携带式末尾加法器减少了关键路径电路块的数量。最后,使用32nm CNTFET(碳纳米管FET)和体CMOS技术实现了建议的加法器进行比较。基于CNTFET的设计极大地降低了电路的PDP(功率延迟积)。仿真结果表明,与传统的基于全加法器的设计相比,基于MUX的压缩机将部分产品缩减阶段的PDP降低了4.24倍。与Kogge-Stone设计相比,稀疏架构解决了电线互连问题,同时略微减少了最终加法器阶段的PDP。基于CNTFET的乘法器的功耗平均是其传统体CMOS功耗的5.72倍,而CNTFET的PDP则是CMOS功耗的94倍。拟议的多路电路及其实现证明了有前途的CNTFET技术具有超低功耗和高性能特性的可行性。

著录项

  • 作者

    Qi, He.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.
  • 学位 M.S.
  • 年度 2012
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号