首页> 外文学位 >Modeling, Design, and Fabrication of Carbon Nanostructures for Next-Generation Integrated Circuit Interconnects and Passive Devices.
【24h】

Modeling, Design, and Fabrication of Carbon Nanostructures for Next-Generation Integrated Circuit Interconnects and Passive Devices.

机译:用于下一代集成电路互连和无源器件的碳纳米结构的建模,设计和制造。

获取原文
获取原文并翻译 | 示例

摘要

The semiconductor industry is confronting an acute problem in the interconnect area--as IC feature sizes continue to be scaled below 22 nm, Cu wires exhibit significant "size effects" resulting in a sharp rise in their resistivity, which in turn has adverse impact both on IC performance and reliability -- in the form of higher communication costs due to increased interconnect delays and chip-level power dissipation, as well as reduced current carrying capacity of the wires. Additionally, designing low-loss and high-quality passive structures becomes increasingly difficult for ultra high-frequency/RF or Terahertz applications. This dissertation explores the feasibility of using carbon nanomaterials such as carbon nanotubes (CNT) and graphene as next-generation interconnects and passive devices to address some of the key performance, energy-efficiency and reliability challenges facing the IC industry--from modeling, design, as well as fabrication perspectives.;On the modeling and design front, this dissertation presents the first and foremost attempt to build a compact circuit model for double/multi-walled CNT interconnects, based on which, the performance of CNT interconnects are analyzed and compared with that of Cu, showing the potential for 50% savings in both delay and power. We are also the first to theoretically illustrate that carbon based interconnects exhibit unique high-frequency behavior in the form of reduced skin effect, which shows great promise for designing low-loss ultra high-frequency interconnects/passive devices and circuits. Moreover, we propose a unique CNT based capacitor design that provides over 4X capacitance density than that required by the International Technology Roadmap for Semiconductors (ITRS) for the year 2014. In addition, we provide the first comprehensive evaluation of CNT vias that are being heavily researched by the semiconductor R&D community, and quantify their impact on the performance and thermal management of the back-end of the chip. En route, we bring forward the key process design requirements for CNT vias.;On the fabrication front, this dissertation presents a novel process that, for the first time, enables fabrication of high-density, long (over 100 microns) and thick (up to microns) horizontally aligned CNT interconnects. The developed process not only yields horizontal CNT interconnects with the lowest reported resistivity, but also enables the first ever fabrication of a CNT based on-chip inductor. Finally, this dissertation includes a first-time study of electrostatic discharge characterization of few-layer graphene (relevant for both active and passive devices), and demonstrates the exceptional robustness of graphene with achieved current density as high as 4.6×108 A/ cm 2.
机译:半导体行业在互连领域面临着一个严峻的问题-随着IC特征尺寸的继续缩小到22 nm以下,Cu线表现出明显的“尺寸效应”,从而导致其电阻率急剧上升,这反过来对两者都产生了不利影响。 IC性能和可靠性方面的问题-由于增加的互连延迟和芯片级功耗以及降低的导线电流承载能力,从而导致更高的通信成本。此外,对于超高频/ RF或太赫兹应用,设计低损耗和高质量的无源结构变得越来越困难。本文探讨了使用碳纳米材料(例如碳纳米管(CNT)和石墨烯)作为下一代互连和无源器件来解决集成电路行业所面临的一些关键性能,能效和可靠性挑战的可行性,包括建模,设计在建模和设计方面,本文提出了建立双/多壁CNT互连的紧凑电路模型的首要尝试,在此基础上,对CNT互连的性能进行了分析和研究。与铜相比,可以节省50%的延迟和功耗。我们也是第一个从理论上说明碳基互连以减少趋肤效应的形式表现出独特的高频行为的方法,这对设计低损耗超高频互连/无源器件和电路具有广阔的前景。此外,我们提出了一种独特的基于CNT的电容器设计,该电容器设计提供的电容密度是2014年国际半导体技术路线图(ITRS)要求的电容密度的4倍以上。此外,我们还首次全面评估了碳纳米管通孔由半导体研发团体进行研究,并量化它们对芯片后端性能和热管理的影响。在途中,我们提出了CNT通孔的关键工艺设计要求。在制造方面,本文提出了一种新颖的工艺,该工艺首次实现了高密度,长(超过100微米)和厚( (最大为微米)水平对齐的CNT互连。开发的工艺不仅可以生产出具有最低电阻率的水平CNT互连,而且还可以首次制造出基于CNT的片上电感器。最后,本文包括对几层石墨烯(与有源和无源器件均相关)的静电放电特性的首次研究,并证明了石墨烯具有出色的鲁棒性,电流密度高达4.6×108 A / cm 2。 。

著录项

  • 作者

    Li, Hong.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Computer.;Nanotechnology.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号