首页> 外文学位 >Compressible shear flow transition and turbulence: Enhancement of GKM numerical scheme and simulation/analysis of pressure effects on flow stabilization.
【24h】

Compressible shear flow transition and turbulence: Enhancement of GKM numerical scheme and simulation/analysis of pressure effects on flow stabilization.

机译:可压缩剪切流过渡和湍流:增强了GKM数值方案,并模拟/分析了压力对流动稳定的影响。

获取原文
获取原文并翻译 | 示例

摘要

Despite significant advancements in the understanding of fluid flows, combustion and material technologies, hypersonic flight still presents numerous technological challenges. In hypersonic vehicles turbulence is critical in controlling heat generation in the boundary layer, mixing inside the combustor, generation of acoustic noise, and mass flow in the intake. The study of turbulence in highly compressible flows is challenging compared to incompressible due to a drastic change in the behavior of pressure and a relaxation of the incompressibility constraint. In addition fluid flow inside a flight vehicle is complicated by wall-effects, heat generation and complex boundary conditions. Homogeneous shear flow contains most of the relevant physics of boundary and mixing layers without the aforementioned complicating effects. In this work we aim to understand and characterize the role of pressure, velocity-pressure interaction, velocity-thermodynamics interaction in the late-stage transition-to-turbulence regime in a high speed shear dominated flow by studying the evolution of perturbations in a high Mach number homogeneous shear flow. We use a modal-analysis based approach towards understanding the statistical behavior of turbulence. Individual Fourier waves constituting the initial flow field are studied in isolation and in combination to understand collective statistical behavior. We demonstrate proof of concept of novel acoustic based strategies for controlling the onset of turbulence. Towards this goal we perform direct numerical simulations (DNS) in three studies: (a) development and evaluation of gas kinetic based numerical tool for DNS of compressible turbulence, and perform detailed evaluation of the efficacy of different interpolation schemes in capturing solenoidal and dilatational quantities, (b) modal investigation in the behavior of pressure and isolation of linear, non-linear, inertial and pressure actions, and (c) modal investigation in the possible acoustic based control strategies in homogeneously sheared compressible flows. The findings help to understand the manifestation of the effects of compressibility on transition and turbulence via the velocity-pressure interactions and the action of individual waves. The present study helps towards the design of control mechanisms for compressible turbulence and the development of physically consistent pressure strain correlation models.
机译:尽管在流体流动,燃烧和材料技术的理解上有了长足的进步,但高超音速飞行仍然提出了许多技术挑战。在高超音速车辆中,湍流对于控制边界层中的热量产生,燃烧室内部的混合,声音噪声的产生以及进气口的质量流量至关重要。与不可压缩的流体相比,由于不可压缩的压力行为的剧烈变化和不可压缩性约束的放松,与可压缩流体相比,湍流的研究具有挑战性。另外,飞行器内部的流体流动由于壁效应,热量产生和复杂的边界条件而变得复杂。均质的剪切流包含边界层和混合层的大多数相关物理特性,而没有上述复杂的影响。在这项工作中,我们旨在通过研究高扰动下的扰动演化,来理解和表征压力,速度-压力相互作用,速度-热力学相互作用在高速切变主导流的后期过渡到湍流状态中的作用。马赫数均匀剪切流。我们使用基于模态分析的方法来理解湍流的统计行为。单独研究和组合构成初始流场的单个傅立叶波,以了解集体统计行为。我们演示了基于新颖的基于声学的策略来控制湍流发作的概念证明。为了实现这一目标,我们在三项研究中进行了直接数值模拟(DNS):(a)开发和评估基于气体动力学的可压缩湍流DNS数值工具,并详细评估了不同插值方案在捕获螺线管和膨胀量方面的功效,(b)压力行为的模态研究以及线性,非线性,惯性和压力作用的隔离,以及(c)均质剪切可压缩流中基于声学的控制策略的模态研究。这些发现有助于通过速度-压力相互作用和单个波浪的作用来理解可压缩性对过渡和湍流影响的表现。本研究有助于可压缩湍流控制机制的设计和物理上一致的压力应变相关模型的发展。

著录项

  • 作者

    Kumar, Gaurav.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号