首页> 外文学位 >Functionalization of planar and nanoscale gallium phosphide for biosensor applications.
【24h】

Functionalization of planar and nanoscale gallium phosphide for biosensor applications.

机译:用于生物传感器应用的平面和纳米级磷化镓的功能化。

获取原文
获取原文并翻译 | 示例

摘要

Early detection of diseases, especially cancer, can significantly reduce mortality. Semiconductor-based biosensors are proving to be the ideal choice for biomarker detection due to their ultrasensitivity, quick detection time, and label-free methods. In a common semiconductor biosensor architecture, namely the field-effect transistor (FET) architecture, organic molecules must be chemisorbed to the semiconductor surface to introduce new functional groups in a process called functionalization. Functionalization allows for passivation and the immoblization of biomolecules which are all crucial for future device fabrication. Much research has been dedicated to silicon because of its domination of the semiconductor industry and well-characterized properties, however, with the miniaturization of technology and a better understanding of inorganic-organic interactions, silicon is quickly becoming obsolete. This dissertation focuses on the functionalization of gallium phosphide (GaP), a III-V semiconductor with properties better suited for the advancement of biomedical technology. Specifically, three separate functionalization strategies were utilized that involve thiol, terminal alkene, and azide chemistry to covalently bind to the GaP surface. Various surface sensitive techniques such as atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and water contact angle were used to quantify the extent of passivation. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to evaluate passivation by quantifying the amount of gallium leaching into various solutions that mimic physiological conditions. The immobilization of biomolecules (specifically, DNA) was also demonstrated using a technique called Kelvin probe force microscopy (KPFM) that measures surface potential. Finally, since nanoscale architectures are currently more pertinent in the field of biosensors, the functionalization and biomolecule immobilization on GaP nanorods was also demonstrated using KPFM.
机译:及早发现疾病,尤其是癌症,可以大大降低死亡率。基于半导体的生物传感器具有超高的灵敏度,快速的检测时间和无标记的方法,因此被证明是生物标志物检测的理想选择。在常见的半导体生物传感器架构中,即场效应晶体管(FET)架构中,必须将有机分子化学吸附到半导体表面上,以在称为功能化的过程中引入新的官能团。功能化允许钝化和固定化生物分子,这对于将来的设备制造都是至关重要的。由于硅在半导体工业中的统治地位和特性良好的特性,人们对硅进行了大量研究,但是,随着技术的小型化和对无机有机相互作用的更深入的了解,硅很快变得过时了。本论文的重点是功能化更适合于生物医学技术的III-V半导体磷化镓(GaP)的功能化。具体而言,利用了三种独立的功能化策略,其中涉及硫醇,末端烯烃和叠氮化物化学以共价结合到GaP表面。各种表面敏感技术(例如原子力显微镜(AFM),X射线光电子能谱(XPS)和水接触角)用于量化钝化程度。电感耦合等离子体质谱(ICP-MS)还用于通过量化浸出到模仿生理条件的各种溶液中的镓的量来评估钝化。还使用一种称为Kelvin探针力显微镜(KPFM)的技术来测量表面电位,从而固定了生物分子(特别是DNA)。最后,由于纳米级架构目前在生物传感器领域中更为相关,因此还使用KPFM证明了GaP纳米棒上的功能化和生物分子固定化。

著录项

  • 作者

    Richards, David N.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号