首页> 外文学位 >Mathematical modeling of pipeline features for robotic inspection.
【24h】

Mathematical modeling of pipeline features for robotic inspection.

机译:用于机器人检查的管道特征的数学建模。

获取原文
获取原文并翻译 | 示例

摘要

Underground pipeline systems play an indispensable role in transporting liquids in both developed and developing countries. The associated social and economic cost to repair a pipe upon abrupt failure is often unacceptable. Regular inspection is a preventative action that aims to monitor pipe conditions, catch abnormalities and reduce the chance of undesirable surprises. Robots with CCTV video cameras have been used for decades to inspect pipelines, yielding only qualitative information. It is becoming necessary and preferable for municipalities, project managers and engineers to also quantify the 3-D geometry of underground pipe networks. Existing robots equipped specialized hardware and software algorithms are capable of scanning the interior geometry of pipelines. Improvement in the 3-D models created from the collected data is a prerequisite for true, quantitative assessment of underground pipelines to take hold.;Many issues regarding pipeline scanning and geometry modeling remain unaddressed or unsolved. The ultimate goal of this research is to target several prominent topics related to the robotic inspection and parametric modeling of pipe geometry, filling gaps in the literature needed for more quantitative pipeline assessment.;First, parametric models of a circular cylindrical pipe undergoing deformation are developed. Different shape patterns that develop for typical pipe deformation pathways can be mathematically expressed using a single parameter. This technique offers convenience in generating or fitting 3-D models of pipes whose cross sections vary along the pipe length, where cross sections can consist of combinations of continuous and discontinuous circular and/or elliptical arcs. The parametric model is applied to the ASTM F1216 pipe liner design standard to improve the estimation of pipe ovality.;Second, the impact of robot length, wheel span and wheel radius on the offset between the pipe origin and the origin of the robotic measurement hardware is quantified; this is important because the interpretation of data collected from camera, radar systems and ultrasonic sensors depends on the location of the hardware inside the pipe. Geometry distortions resulting from the passage of a robot through a pipe bend are simulated to demonstrate errors that can arise in cross sectional pipe measurements.;Third, an algorithm is proposed to compute the pitch, yaw and roll of a robot as well as the major and minor axis of a pipe based on laser ring measurements taken from a single end of the robot. An enhanced version of an existing double-ended measurement algorithm is presented to reduce error when pitch, yaw and roll are large.;Fourth, the relationship between geometry measurement and image processing is explored. A template-guided lateral detection paradigm using homogeneous geometric transformations and the Discrete Fourier Transform is proposed and evaluated according to error arising from lateral size, camera position and camera orientation. Relatively large laterals resembling an eclipse are easier to detect than small ones.;Fifth, a new parametric model of the shape assumed by a flexible pipe liner encased in an elliptical host pipe is presented. This model overcomes deficiencies in existing models by correctly accounting for continuity in the slope and curvature of the liner profile.
机译:在发达国家和发展中国家,地下管道系统在运输液体中都扮演着不可或缺的角色。在突然失效时维修管道的相关社会和经济成本通常是无法接受的。定期检查是一种预防措施,旨在监视管道状况,发现异常情况并减少意外意外的机会。带有闭路电视摄像机的机器人已经用于检查管道数十年,仅产生定性信息。对于市政当局,项目经理和工程师来说,量化地下管道网络的3D几何形状也变得越来越必要和可取。现有的配备有专门的硬件和软件算法的机器人能够扫描管道的内部几何形状。从收集到的数据创建的3-D模型中进行的改进是对地下管线进行真实,定量评估的前提。;关于管线扫描和几何建模的许多问题仍未解决或尚未解决。这项研究的最终目标是针对与管道几何形状的机器人检查和参数化建模有关的几个突出主题,填补文献中需要进行定量管道评估的空白。首先,开发了承受变形的圆柱形管道的参数化模型。 。可以使用单个参数在数学上表达针对典型管道变形路径形成的不同形状模式。此技术为生成或拟合横截面沿管道长度变化的管道3D模型提供了便利,其中横截面可以由连续和不连续的圆弧和/或椭圆弧的组合组成。将参数模型应用于ASTM F1216管道衬里设计标准,以改善对管道椭圆度的估计。第二,机器人长度,轮距和轮半径对管道原点与机器人测量硬件原点之间的偏移量的影响被量化这一点很重要,因为从摄像机,雷达系统和超声传感器收集的数据的解释取决于管道内部硬件的位置。模拟了由于机器人经过弯管而导致的几何变形,以证明在横截面管道测量中可能出现的误差。第三,提出了一种算法来计算机器人的俯仰,偏航和侧倾以及主管道的短轴和短轴是基于从机器人单端获取的激光环测量结果。提出了现有双端测量算法的增强版本,以减小俯仰,偏航和侧倾较大时的误差。第四,探讨了几何测量与图像处理之间的关系。提出了一种模板引导的横向检测范例,该范例使用齐次几何变换和离散傅立叶变换,并根据横向尺寸,摄像机位置和摄像机方向引起的误差进行了评估。类似于月食的相对较大的支管比较小的支管更易于检测。第五,提出了一种新的参数化模型,其形状由装在椭圆形主管中的挠性管衬所假定。该模型通过正确考虑衬管轮廓的斜率和曲率的连续性,克服了现有模型的不足。

著录项

  • 作者

    Gao, Yang.;

  • 作者单位

    Louisiana Tech University.;

  • 授予单位 Louisiana Tech University.;
  • 学科 Applied Mathematics.;Engineering Civil.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号