首页> 外文学位 >Recovery: A novel data mining approach from mining engineering perspectives.
【24h】

Recovery: A novel data mining approach from mining engineering perspectives.

机译:恢复:从挖掘工程的角度来看,一种新颖的数据挖掘方法。

获取原文
获取原文并翻译 | 示例

摘要

The amount of data produced is growing explosively and demands efficient ways to mine the information. As a highly interdisciplinary field, data mining derives ideas and methodologies from many disciplines. Mineral mining terminologies have been widely used in data mining products, company names, and websites. The metaphorical relationship implies strong links between data mining and mineral mining. However, an in-depth and systematic study between these two fields has been lacking.; This research endeavors to introduce mineral mining into data mining. The analogy of data mining and mineral mining is presented from the macroscopic to the microscopic. A Recovery problem stemming from the interdisciplinary study is found in the database environment. The nature and uniqueness of the Recovery theory is examined in the research. Recovery metrics are derived from mineral mining engineering. An example of the application of Recovery theory is provided in the form of a university donation campaign. All steps of the process, pre-Recovery mining, Recovery mining, and post-Recovery mining, are analyzed in this example.; The preliminary study of Recovery theory reveals that mineral mining can provide data mining real techniques for implementation. Recovery theory strives to maximize information retrieval from the entire resource and the integrated reserve in a cost-efficient fashion. It reflects many business demands.
机译:产生的数据量呈爆炸性增长,并需要有效的方法来挖掘信息。作为一个高度跨学科的领域,数据挖掘从许多学科中衍生出思想和方法论。矿物开采术语已广泛用于数据挖掘产品,公司名称和网站中。隐喻关系意味着数据挖掘和矿物挖掘之间的紧密联系。但是,这两个领域之间缺乏深入和系统的研究。这项研究致力于将矿物开采引入数据挖掘。数据挖掘和矿物挖掘的类比是从宏观到微观的。在数据库环境中发现了跨学科研究引起的恢复问题。该研究探讨了恢复理论的性质和独特性。回收指标来自矿物开采工程。以大学捐赠活动的形式提供了恢复理论的应用示例。在此示例中,分析了该过程的所有步骤,包括恢复前的挖掘,恢复中的挖掘和恢复后的挖掘。恢复理论的初步研究表明,矿产开采可以为实施提供数据挖掘的真实技术。恢复理论致力于以经济高效的方式最大程度地从整个资源和综合储备中检索信息。它反映了许多业务需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号