首页> 外文期刊>International journal of data mining, modelling and management >Model-driven data mining engineering:from solution-driven implementations to 'composable' conceptual data mining models
【24h】

Model-driven data mining engineering:from solution-driven implementations to 'composable' conceptual data mining models

机译:模型驱动的数据挖掘工程:从解决方案驱动的实现到“可组合的”概念数据挖掘模型

获取原文
获取原文并翻译 | 示例

摘要

Data mining lacks a general modelling architecture allowing analysts to consider and interpret it as a truly software-engineering process, which would be beneficial for a wide spectrum of modem application scenarios. Bearing this in mind, in this paper, we propose an innovative model-driven engineering approach of data mining whose main goal consists in overcoming well-recognised limitations of actual approaches. The cornerstone of our proposal relies on the definition of a set of suitable model transformations which are able to automatically generate both the data under analysis, which are deployed via well-consolidated data warehousing technology and the analysis models for the target data mining tasks, which arc tailored to a specific data-mining/analysis platform. These modelling tasks are now entrusted to the model-transformation scaffolds and rely on top of a well-defined reference architecture. The feasibility of our approach is finally demonstrated and validated by means of a comprehensive set of case studies.
机译:数据挖掘缺乏通用的建模架构,因此分析人员无法将其视为真正的软件工程过程,并将其解释为真正的软件工程过程,这将有利于广泛的现代应用场景。考虑到这一点,在本文中,我们提出了一种创新的模型驱动的数据挖掘工程方法,其主要目标在于克服公认的实际方法的局限性。我们提案的基础依赖于一组适当的模型转换的定义,这些转换能够自动生成正在分析的数据,这些转换是通过充分整合的数据仓库技术和用于目标数据挖掘任务的分析模型进行部署的,针对特定的数据挖掘/分析平台进行了量身定制。现在,这些建模任务已委托给模型转换支架,并依赖于定义良好的参考体系结构的顶部。最后,我们通过一套全面的案例研究来证明和验证了我们方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号