首页> 外文学位 >Dynamics and control of collision of multi-link humanoid robots with a rigid or elastic object.
【24h】

Dynamics and control of collision of multi-link humanoid robots with a rigid or elastic object.

机译:多链接类人机器人与刚性或弹性物体碰撞的动力学和控制。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this dissertation is to understand how the humanoid organisms or machines use appropriate control strategies and reference motions to achieve the desirable collision responses such as the contact time, the contact forces, the departure velocities of two colliding subjects and the physical deformation. Thereby, the collision of a subject with a rigid object such as a flat ground or a soft object such as a soccer ball is modeled and studied. Collision is a challenging task and involves coupling, motion planning, dynamics and controls.; In particular, we are interested in the collision of a humanoid organism with a ground in the step stance. This collision involves the interaction between the two rigid objects. The equations of motion of a five-link three-dimensional subject embedded in a space larger than the joint space of the system are developed by sequential elimination, orthogonality of the spaces and virtual work mechanism, and then are projected onto the sagittal plane. The model is further projected onto the joint space where we obtain a tenth-order under-actuated system with the maximal number of three outputs that can be regulated. To avoid tackling such a system with complicated internal dynamics, finally, we project the joint space model onto the subspace whose dimension is equal to the number of degrees of freedom of the system.; Collision time between two objects can be as short as several milliseconds. Fast tracking convergence and small steady state tracking error are required in numerical simulation. For the step stance leap, an integral sliding mode control strategy is designed to track the reference motion, obtained by experimental recording of humans executing the step stance leap. It eliminates the reaching phase for the sliding mode. The stability, finite-time convergence and robustness of the systems are studied, proved and verified by computer simulation. The sliding mode control algorithm is developed to track the preplanned trajectory against modeling uncertainties and impact disturbances for the ball-foot interaction.; The experiments are emphasized in this research. For the step stance leap, the predicted GRF profiles are in agreement with experimental recording of the GRFs. In particular, the predictions capture the short duration and large amplitudes of the GRFs upon impact as well as the burst of high energy required during the take-off phase. For the ball-foot collision, the collision duration, the ball's departure velocity, the average ball-foot collision force and the ball's peak deformation obtained by simulation match the reported results. The observed three phases of the ball-foot collision are confirmed by our simulation. The "follow-through" phenomenon in sports is also demonstrated.
机译:本文的主要目的是了解类人生物或机器如何使用适当的控制策略和参考运动来实现理想的碰撞响应,例如接触时间,接触力,两个碰撞对象的离开速度以及物理变形。由此,对对象与诸如平坦地面的刚性物体或诸如足球之类的软物体的碰撞进行建模和研究。碰撞是一项具有挑战性的任务,涉及耦合,运动计划,动力学和控制。特别地,我们对人形生物与台阶姿态中地面的碰撞感兴趣。这种碰撞涉及两个刚性物体之间的相互作用。通过顺序消除,空间的正交性和虚拟的工作机制,开发了嵌入比系统的关节空间大的空间中的五连杆三维对象的运动方程,然后将其投影到矢状面上。该模型被进一步投影到关节空间,在此我们获得了一个十阶欠驱动系统,该系统具有最多三个可调节的输出。为了避免用复杂的内部动力学处理这样的系统,最后,我们将联合空间模型投影到子空间上,该子空间的尺寸等于系统的自由度数。两个对象之间的碰撞时间可以短至几毫秒。数值模拟需要快速跟踪收敛和小的稳态跟踪误差。对于跨步姿势,设计了一种集成的滑模控制策略来跟踪参考运动,该策略是通过对执行跨步姿势的人进行实验记录而获得的。它消除了滑动模式的到达阶段。通过计算机仿真研究,证明和验证了系统的稳定性,有限时间收敛性和鲁棒性。开发了滑模控制算法,以针对建模不确定性和球脚相互作用的冲击干扰来跟踪预定的轨迹。在这项研究中强调了实验。对于阶跃姿态,预测的GRF轮廓与GRF的实验记录一致。特别是,这些预测记录了撞击时GRF的持续时间短且振幅大,以及起飞阶段所需的高能量爆发。对于球脚碰撞,通过模拟获得的碰撞持续时间,球的离开速度,平均球脚碰撞力和球的峰值变形与报告的结果相匹配。我们的模拟证实了观察到的球足碰撞的三个阶段。还证明了运动中的“跟进”现象。

著录项

  • 作者

    Chen, Zengshi.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号