首页> 外文学位 >Vertically ordered nanostructures for energy harvesting and storage.
【24h】

Vertically ordered nanostructures for energy harvesting and storage.

机译:垂直有序排列的纳米结构,用于能量收集和存储。

获取原文
获取原文并翻译 | 示例

摘要

Vertically ordered (1-D) nanostructures provide a promising alternative to conventional nanoparticle films used as electrode materials for energy conversion and storage devices. These 1-D nanostructures, in forms of nanowires or nanotubes, promote mass transfer and accessibility of the electrodes while providing a direct conduction path for electrons. Our work has been focused on synthesis and application of novel 1-D nanostructures for dye-sensitized solar cells (DSCs) and lithium-ion batteries (LIBs).;The vertically aligned 1-D nanostructures are employed in DSCs to overcome the limitation of nanoparticle-based DSCs. Much longer electron life time has been observed in DSCs based on 1-D nanostructures compared to the nanoparticle-based ones, which allows us to use thicker sensitized film to improve the efficiency. We have developed a facile low-temperature hydrothermal method to synthesize vertically aligned ZnO nanowire arrays directly on transparent conductive oxide, and to use the ZnO nanowire arrays as a template to synthesize SnO2 nanotube arrays. In addition, we have developed a convenient approach that involves alternate cycles of nanowire growth and self-assembled monolayer coating processes for synthesizing multilayer assemblies of 1-D nanostructures with ultrahigh internal surface areas.;The vertically aligned nanostructure also enables us to fabricate high-efficiency solidstate DSCs by replacing the liquid electrolyte with a solid hole transporting material. The vertically aligned nanostructures provide straight channels for filling the solid electrolyte, enabling the use of thicker photoanodes for solid-state DSCs. Significantly, by using vertically aligned multilayer arrays of TiO2-coated ZnO nanowires, liquid-electrolyte DSCs with power conversion efficiency up to 7.0% and solid-state DSCs with efficiency up to 5.65% have been obtained.;Vertically ordered 1-D nanostructures also offer remarkable advantages for rechargeable LIBs including fast electron transport/collection and ion diffusion, enhanced electrode-electrolyte contact area, and facile accommodation of strains caused during the charge and discharge cycles. We have developed a method to fabricate SnO2 nanotube arrays and hybrid Snbased nanotube arrays directly on current collecting substrate (Ti) and have evaluated their performance as anodes in rechargeable LIBs. The hybrid Sn-based nanotube arrays synthesized by us delivered a capacity of 710 mAh/g after 80 cycles with a low capacity fade.
机译:垂直有序的(1-D)纳米结构为用作能量转换和存储设备的电极材料的常规纳米颗粒薄膜提供了有希望的替代方法。这些一维纳米结构以纳米线或纳米管的形式,促进了电极的质量传递和可及性,同时为电子提供了直接的传导路径。我们的工作一直专注于染料敏化太阳能电池(DSC)和锂离子电池(LIB)的新型1-D纳米结构的合成和应用。基于纳米颗粒的DSC。与基于纳米颗粒的DSC相比,在基于一维纳米结构的DSC中观察到更长的电子寿命,这使我们能够使用更厚的感光膜来提高效率。我们已经开发了一种简便的低温水热方法,可以直接在透明导电氧化物上合成垂直排列的ZnO纳米线阵列,并以ZnO纳米线阵列为模板来合成SnO2纳米管阵列。此外,我们已经开发出一种便捷的方法,该方法涉及纳米线生长和自组装单层涂层工艺的交替循环,以合成具有超高内表面积的一维纳米结构的多层组件。垂直排列的纳米结构还使我们能够制造出高密度的纳米结构。通过用固体空穴传输材料代替液体电解质来实现高效率的固态DSC。垂直排列的纳米结构提供用于填充固体电解质的直通道,从而可以将更厚的光阳极用于固态DSC。值得注意的是,通过使用垂直排列的TiO2包覆的ZnO纳米线的多层阵列,可以获得功率转换效率高达7.0%的液体电解质DSC和效率高达5.65%的固态DSC;也获得了垂直有序的一维纳米结构锂离子可充电锂电池具有显着的优势,包括快速的电子传输/收集和离子扩散,增强的电极与电解质的接触面积以及在充电和放电循环中易于适应应变的能力。我们开发了一种直接在集流基板(Ti)上制造SnO2纳米管阵列和混合Sn基纳米管阵列的方法,并评估了它们在可再充电LIB中作为阳极的性能。我们合成的杂化锡基纳米管阵列在80个循环后的容量衰减为710 mAh / g。

著录项

  • 作者

    Desai, Umang Vijay.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号