首页> 外文学位 >Flexoelectricity and piezoelectricity in nanostructures and consequences for energy harvesting and storage.
【24h】

Flexoelectricity and piezoelectricity in nanostructures and consequences for energy harvesting and storage.

机译:纳米结构中的柔电和压电及其对能量收集和存储的影响。

获取原文
获取原文并翻译 | 示例

摘要

In response to mechanical stimuli, certain crystalline dielectrics (piezoelectrics) electrically polarize. Symmetry considerations restrict it to be non-zero only for dielectrics belonging to crystallographic point groups that admit non-centrosymmetry. A non-uniform strain field or the presence of strain gradients can, however, locally break inversion symmetry and induce polarization even in centrosymmetric crystals. This phenomenon is termed flexoelectrictiy. Recently, flexoelectricity has caught the attention of several researchers and indeed some have proposed tantalizing notions related to this phenomenon such as "piezoelectric materials without using piezoelectric materials," "renormalization of Curie temperature in ferroelectric thin films" and "electro-mechanical nano-indentation size-effect," among others.;In this dissertation, we investigate (using theoretical and atomistic methods) the role of flexoelectricity in nanostructures that are already piezoelectric and the emergent consequences for electromechanical behavior, energy harvesting and storage.;We show that flexoelectricity can result in a significant enhancement of the effective piezoelectric response of nanostructures, e.g., as much as 300% in tetragonal (piezoelectric) BaTiO3 nanobeams. In a certain optimum size range, piezoelectric nanostructures also exhibit enhanced energy harvesting.;Energy storage is a major bottleneck in the emerging "energy crisis." Next generation advances in energy storage and nanoelectronics require capacitors fabricated at the nanoscale. High dielectric constant materials such as ferroelectrics are important candidates for those. Recent work has shown that, despite popular belief, electrostatic nanocapacitor arrays can be used for high energy storage density as well and not just high power density (i.e., paving the way for large scale application such as the automobile). Consider the following: the expected capacitance of a 2.7 nm SrTiO3 thin film is 1600 fFmicrom -2. What is the likely value in reality? 258 fFmicrom-2 ! This dramatic drop in capacitance is attributed to the so-called "dead layer" effect. Using theoretical and quantum mechanical calculations we elucidate the mechanisms behind the intrinsic "dead layer" effect. State-of-the-art fabrication methods and nearly atomistic control of interfaces have ruled out purely defect based arguments on the origin of the "dead layer." We find that nearly the entire drop in capacitance at the nanoscale is due to flexoelectricity. The latter crucially depends on the local curvature and electric field penetration at the metal-dielectric interface. Our work thus provides a path for geometrical design of interfaces to mitigate the dead-layer effect.
机译:响应机械刺激,某些晶体电介质(压电)发生电极化。对称性考虑因素仅对于属于允许非中心对称性的晶体学点群的电介质将其限制为非零。但是,不均匀的应变场或应变梯度的存在,即使在中心对称晶体中,也可能局部破坏反演对称性并引起极化。这种现象称为柔电。近年来,挠性电引起了一些研究者的注意,确实有人提出了与这种现象有关的诱人概念,例如“不使用压电材料的压电材料”,“铁电薄膜中居里温度的重新归一化”和“机电纳米压痕”。尺寸效应”。;在本文中,我们研究(使用理论和原子方法)柔性电在已经是压电的纳米结构中的作用,以及对机电行为,能量收集和存储的新兴结果。;我们证明了柔性电可以显着增强纳米结构的有效压电响应,例如在四方(压电)BaTiO3纳米束中提高多达300%。在一定的最佳尺寸范围内,压电纳米结构还具有增强的能量收集能力。能量存储是新出现的“能量危机”的主要瓶颈。下一代储能技术的进步和纳米电子技术需要以纳米级制造的电容器。高介电常数材料(例如铁电材料)是这些材料的重要候选材料。最近的工作表明,尽管人们普遍相信,静电纳米电容器阵列也可以用于高能量存储密度,而不仅仅是高功率密度(即,为诸如汽车之类的大规模应用铺平了道路)。考虑以下情况:2.7 nm SrTiO3薄膜的预期电容为1600 fFmicrom -2。现实中可能的价值是什么? 258 fFmicrom-2!电容的急剧下降归因于所谓的“死层”效应。使用理论和量子力学计算,我们阐明了固有的“死层”效应背后的机制。最新的制造方法和几乎原子的界面控制已排除了有关“死层”起源的纯粹基于缺陷的论点。我们发现,纳米级电容几乎全部下降是由于柔电。后者关键取决于金属-电介质界面处的局部曲率和电场穿透。因此,我们的工作为接口的几何设计提供了一条途径,以减轻死层效应。

著录项

  • 作者

    Majdoub, Mohamed Sabri.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Mechanical.;Physics Electricity and Magnetism.;Energy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号