首页> 外文学位 >Silicon carbide thin films via low pressure chemical vapor deposition for micro- and nano-electromechanical systems.
【24h】

Silicon carbide thin films via low pressure chemical vapor deposition for micro- and nano-electromechanical systems.

机译:通过低压化学气相沉积的碳化硅薄膜,用于微和纳米机电系统。

获取原文
获取原文并翻译 | 示例

摘要

Micro- and Nano-electromechanical Systems (MEMS and NEMS) consist of devices which can sense and actuate on the micrometer and nanometer scales. A number of MEMS devices have been commercialized, including accelerometers, gyroscopes, pressure sensors, and micromirror displays. The most common structural layer used in this technology is polycrystalline silicon, which is adequate for MEMS/NEMS devices operating in ambient environments; however, the use of a more robust material, such as silicon carbide, would permit micromechanical devices to function in a variety of harsh environments, including high temperatures, high pressures, and highly abrasive and corrosive conditions. In order for SiC to become a standard micromachining material and thus enable harsh environment sensors and actuators, deposition of high-quality SiC thin films on standard wafers with controlled electrical and mechanical properties must be possible.;This work describes the development and characterization of a horizontal hot-wall low pressure chemical vapor deposition reactor to deposit polycrystalline 3C-SiC (poly-SiC) thin films from the precursors 1,3-disilabutane (1,3-DSB) and dichlorosilane (DCS). Deposition is performed on 100 and 150 mm silicon wafers at 800°C and 40-400 mTorr. Using the standard open boat geometry, the film uniformity is found to be poor. Upon identification of the two dominant reaction pathways, the reaction channel which leads to the non-uniform growth is quenched by the use of a closed-boat geometry. In this way, highly uniform films across individual wafers and between wafers are achieved.;The stress and strain gradient are quantified and related to the process parameters through wafer curvature measurements and a number of microfabricated devices. In the absence of DCS, highly stressed films result regardless of deposition conditions. Varying the flow rate ratio of DCS to 1,3-DSB is found to control residual stress and reduce strain gradient. Electron probe microanalysis shows that added dichlorosilane increases the silicon-to-carbon ratio of the films. Transmission electron micrographs (TEM) of film cross-sections, plane view atomic force micrographs (AFM), and plane-view scanning electron micrographs (SEM) reveal a changing crystallinity and film morphology with dichlorosilane addition. A model is developed to fit the data based on thermal stress, intrinsic stress due to changing Si:C ratio, and intrinsic stress due to grain boundary effects.;Ammonia is used for in-situ doping of the SiC films. By varying the ammonia flow rate and subsequent annealing temperature, the resistivity of the films is controlled and ranges from over 2 MO·cm to 18 MO·cm. Secondary ion mass spectroscopy shows that increased ammonia flow rate leads to increased nitrogen incorporation in the films. Over the range examined, film resistivity is found to decrease with both increased nitrogen incorporation and higher annealing temperatures. The effect of doping on strain and strain gradient is also investigated. SIMS and XPS analyses indicate the change in mechanical properties upon annealing is correlated to oxygen impurity levels and the bonding state of the incorporated nitrogen atoms.;Investigation of the deposition and annealing of poly-SiC reveals a rich phase space of electrical and mechanical properties with no universal linear correlations between resistivity, residual stress, and strain gradient. Semi-insulating SiC (resistivity greater than 2.7 MO·cm) can only be achieved with high residual stress (greater than 1.0 GPa tensile) and high strain gradient (magnitude greater than 2.7x10-3 mum-1). Resistivity levels between 200 O·cm and 20 mO·cm can be achieved with moderately tensile stress (300 +/- 30 MPa tensile) and low strain gradient (magnitude less than 7.7x10-3 mum -1) films. Lower resistivity can be achieved by annealing, but this yields compressively stressed films (as large as 240 MPa compressive) with large strain gradients (magnitude as great as 1.8x10-2 mum -1).;The ability to deposit uniform and doped SiC films on 100 and 150 mm wafers with controlled electrical and mechanical properties enables MEMS/NEMS designers to create a variety of devices for harsh environment applications.
机译:微米和纳米机电系统(MEMS和NEMS)由可以在微米和纳米尺度上感应和启动的设备组成。许多MEMS器件已经商业化,包括加速度计,陀螺仪,压力传感器和微镜显示器。该技术中最常用的结构层是多晶硅,足以用于在环境中运行的MEMS / NEMS器件。但是,使用更坚固的材料(例如碳化硅)将使微机械设备能够在各种苛刻的环境中运行,包括高温,高压以及高磨蚀性和腐蚀性条件。为了使SiC成为标准的微加工材料并因此使其能够用于恶劣的环境传感器和执行器,必须在具有受控的电气和机械性能的标准晶片上沉积高质量的SiC薄膜。卧式热壁低压化学气相沉积反应器,以沉积来自前体1,3-二硅丁烷(1,3-DSB)和二氯硅烷(DCS)的多晶3C-SiC(poly-SiC)薄膜。在800°C和40-400 mTorr的100和150 mm硅晶片上进行沉积。使用标准的敞口船几何形状,发现薄膜均匀性很差。在确定了两个主要的反应路径后,通过使用密闭容器几何结构来淬灭导致不均匀生长的反应通道。这样,就可以在各个晶片之间以及晶片之间获得高度均匀的薄膜。通过晶片曲率测量和许多微细加工的设备,可以量化应力和应变梯度并将其与工艺参数相关。在没有DCS的情况下,无论沉积条件如何,都会产生高应力薄膜。发现改变DCS与1,3-DSB的流量比可以控制残余应力并减小应变梯度。电子探针微分析表明,添加的二氯硅烷可增加薄膜的硅碳比。膜横截面的透射电子显微图(TEM),平面视图原子力显微图(AFM)和平面视图扫描电子显微图(SEM)揭示了添加二氯硅烷后结晶度和膜形态的变化。根据热应力,Si:C比值变化引起的固有应力和晶界效应引起的固有应力,开发了一个模型来拟合数据。氨用于SiC膜的原位掺杂。通过改变氨的流速和随后的退火温度,可以控制薄膜的电阻率,其范围从2MO·cm到18MO·cm。二次离子质谱表明,增加的氨流速导致膜中氮的掺入增加。在所检查的范围内,发现膜电阻率随着氮掺入的增加和退火温度的升高而降低。还研究了掺杂对应变和应变梯度的影响。 SIMS和XPS分析表明,退火后机械性能的变化与氧杂质水平和所结合氮原子的键合状态有关。;对聚SiC沉积和退火的研究表明,电和机械性能具有丰富的相空间。在电阻率,残余应力和应变梯度之间没有普遍的线性关系。半绝缘SiC(电阻率大于2.7 MO·cm)只能通过高残余应力(大于1.0 GPa拉伸强度)和高应变梯度(幅度大于2.7x10-3 mum-1)来实现。使用适度的拉伸应力(300 +/- 30 MPa拉伸)和低应变梯度(幅值小于7.7x10-3 mum -1)的薄膜可以实现200 O·cm至20 mO·cm的电阻率水平。通过退火可以实现较低的电阻率,但这会产生具有大应变梯度(幅值最大为1.8x10-2 mum -1)的压应力膜(压缩应力最大为240 MPa)。沉积均匀和掺杂SiC膜的能力MEMS / NEMS设计人员可以在100和150 mm晶圆上控制电气和机械性能,从而使MEMS / NEMS设计人员能够创建用于恶劣环境应用的各种器件。

著录项

  • 作者

    Roper, Christopher Stephen.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号