首页> 外文学位 >Electromigration induced step instabilities on silicon surfaces.
【24h】

Electromigration induced step instabilities on silicon surfaces.

机译:电迁移在硅表面上引起阶跃不稳定性。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis I will report on a sequence of experiments designed to address the complex step bunching behavior observed on Si(111). Prior to our studies it was proposed that increased step permeability [S. Stoyanov, Surf. Sci. 416, 200 (1998)] might be responsible for the change from step-down to step-up current bunching under sublimation conditions. Step permeability means that there is a significant direct flow of atoms from one terrace to another. According to this model, if steps are permeable enough then the surface will be unstable (stable) toward bunching for a step-up current under net sublimation (growth) conditions. By studying how Si deposition conditions affect step bunching during step-up direct current heating we find that this model cannot account for step bunching for step-up current in Regime II. We arrived at this conclusion by experimentally showing that there was no transition from step instability to stability when changing from net sublimation to net growth conditions in Regime II.;Another issue concerning step bunching on the Si(111) is whether the diffusion of atoms across terraces or the attachment/detachment of atoms to and from steps is rate limiting. We address this issue by measuring how the number of steps N and the minimum terrace width lmin in a bunch depend on initial surface miscut in all three temperature regimes. This is the first report of how bunching depends on surface miscut, and by comparing experiments to both analytical predictions and numerical simulations of the Stoyanov's sharp-step model we conclude that diffusion across terraces is rate limiting during step-down bunching in Regimes I and III for a wide range of surface miscut. This is contrary to previous beliefs that the attachment/detachment of atoms from step-edges was extremely slow compared to the diffusion on terraces. Because the original sharp-step model cannot explain step-up current bunching we were unable to conclude anything about Regime II, but it is interesting to note that we observe nearly the same dependencies of N and lmin on miscut in all three step bunching regimes. This suggests that the fundamental mechanism for step bunching may be similar at all temperatures. (Abstract shortened by UMI.).
机译:在这篇论文中,我将报告一系列旨在解决在Si(111)上观察到的复杂阶梯束行为的实验序列。在我们的研究之前,有人建议增加阶跃磁导率[S。斯托亚诺夫,冲浪。科学416,200(1998)]可能是升华条件下从降压电流到升压电流的变化的原因。阶梯渗透率意味着原子从一个平台直接流向另一个平台。根据此模型,如果台阶具有足够的可渗透性,则在净升华(生长)条件下,对于升压电流,表面将变得不稳定(稳定),难以成束。通过研究Si沉积条件如何在升压直流加热过程中影响阶梯聚束,我们发现该模型无法解决Regime II中升压电流的阶梯聚束。通过实验表明,在II型从净升华到净生长条件变化时,从阶跃不稳定性到稳定性没有过渡。;关于Si(111)上阶跃成束的另一个问题是原子是否扩散穿过台阶或原子与台阶的连接/分离是速率限制。我们通过测量一堆中的步数N和最小平台宽度lmin如何取决于所有三个温度范围内的初始表面切割来解决此问题。这是关于聚束如何依赖于表面不正确切割的第一份报告,并且通过将实验与Stoyanov的锐步模型的分析预测和数值模拟进行比较,我们得出结论,在方案I和III的降压聚束过程中,梯田之间的扩散限制了速率适用于各种表面误切。这与先前的观点相反,即与阶跃扩散相比,原子从台阶边缘的附着/分离极其缓慢。因为原始的急步模型不能解释升压电流束,所以我们无法得出关于Regime II的任何信息,但是有趣的是,我们注意到在所有三个步束状态中,N和lmin对误切的依赖性几乎相同。这表明步进聚束的基本机理可能在所有温度下都相似。 (摘要由UMI缩短。)。

著录项

  • 作者

    Gibbons, Brian J.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Condensed matter physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号