首页> 外文学位 >Phonon-assisted charge carrier dynamics and photoexcited state phenomena in nanoscale systems: Semiconductor quantum dots and carbon nanotubes.
【24h】

Phonon-assisted charge carrier dynamics and photoexcited state phenomena in nanoscale systems: Semiconductor quantum dots and carbon nanotubes.

机译:纳米系统中的声子辅助电荷载流子动力学和光激发态现象:半导体量子点和碳纳米管。

获取原文
获取原文并翻译 | 示例

摘要

Electronic structure and relaxation of photo excitations in nano-size materials, such as carbon nanotubes (CNTs) and quantum dots (QDs), are strongly affected by interaction with phonons. We use a wide arsenal of theoretical tools to approach these phenomena. In order to investigate the intricate details of phonon-induced dynamics in QDs, this study uses a novel state-of-the-art quantum-classical approach that combines a molecular dynamics formalism based on density functional theory with a trajectory surface hopping approach. Applying this method, we calculate electronic structure and real-time atomistic relaxation dynamics of charge carriers in QDs made from different materials, such as PbSe and CdSe, that are widely used in nanotechnology. While the sizes of the systems we study are close in size to the typical experimentally investigated QDs, our numeric calculations have an accuracy similar to first-principle quantum mechanical methods. Using this approach, we provide information about the mechanisms that occur on the atomic level and that are extremely difficult---if not impossible---to probe experimentally. We specifically focus on the phonon bottleneck effect in strongly confined QDs---a mysterious phenomenon predicted theoretically but not observed experimentally. We show that PbSe and CdSe have drastically different electronic band structures. Despite this difference, both QDs demonstrate fast subpicosecond relaxation and the absence of the phonon bottleneck, which agree with experiments. We present two rationalizations for such fast relaxation. First, a surface reconstruction and the deviation from the absolute spherical symmetry of the QD lead to a dense distribution of electronic states near the band edges. Most of these states are optically dark; however, they can still help the relaxation process avoiding the phonon bottleneck. Second, localization of wave functions and strong nonadiabatic electron-phonon coupling in small QDs both enhance the probability of multiphonon processes opening a new channel of relaxation and increasing relaxation rates.; In the second part of the thesis we address excited state phenomena in CNTs using the excited-state molecular dynamics methodology that is based on the time-dependent Hartree-Fock approach. This method incorporates electron-hole interactions (excitonic effects), which are essential in CNTs, and makes simulations of exciton-vibrational dynamics in very large systems (up to one thousand atoms in size) possible, while retaining the necessary quantitative accuracy. Based on this approach, we analyze in detail the nature of the strongly bound first and second excitons in CNTs for a number of different tubes, emphasizing emerging size-scaling laws. Characteristic delocalization properties of excited states are identified by the underlying photoinduced changes in charge densities and bond orders. We also estimate the exciton-phonon coupling and its size-scaling law in different CNTs by calculating Huanb Rhys factors, vibrational relaxation and Stokes shift energies, which increase with increasing tube diameter. Due to the rigid structure, exciton-phonon coupling is much weaker in SWCNTs compared to QDs and to typical molecular materials. Yet in the ground state, a CNT surface experiences the corrugation associated with electron-phonon interactions. Vibrational relaxation following photoexcitation reduces this corrugation, leading to a local distortion of the tube surface, which is similar to the formation of self-trapped excitons in conjugated polymers.; Both numerical approaches provide observables, such as relaxation rates in QDs and Huanb-Rhys factors and Stokes shift energies in CNTs, that are possible to detect experimentally. Thus, our results allow for better understanding of photoinduced electronic dynamics in nanomaterials, guiding design of new experimental probes, and, potentially may lead to new nanotechnological applications.
机译:与声子的相互作用强烈影响纳米结构材料(如碳纳米管(CNT)和量子点(QD))中的电子结构和光激发的弛豫。我们使用大量的理论工具来处理这些现象。为了研究量子点中声子引起的动力学的复杂细节,本研究使用了一种新颖的量子经典方法,该方法结合了基于密度泛函理论的分子动力学形式学和轨迹表面跳变方法。应用这种方法,我们可以计算出在纳米技术中广泛使用的由不同材料(例如PbSe和CdSe)制成的量子点中的载流子的电子结构和实时原子弛豫动力学。虽然我们研究的系统的大小与典型的实验量子点接近,但我们的数值计算却具有类似于第一原理量子力学方法的准确性。使用这种方法,我们提供了有关原子级发生的机制的信息,这些机制极其难以(即使不是不可能)通过实验进行探索。我们特别关注强约束量子点中的声子瓶颈效应-一种在理论上预测但在实验上未观察到的神秘现象。我们表明,PbSe和CdSe具有截然不同的电子能带结构。尽管存在这种差异,但两个量子点都表现出快速的皮秒松弛和声子瓶颈的缺乏,这与实验一致。对于这种快速放松,我们提出了两种合理化方法。首先,表面重建以及与QD的绝对球形对称性的偏离导致在带边缘附近电子态的密集分布。这些状态大多数都在光学上是黑暗的。但是,它们仍然可以帮助松弛过程避免声子瓶颈。其次,在小量子点中波函数的局域化和强非绝热电子-声子耦合都增加了多声子过程打开新的弛豫通道并提高弛豫率的可能性。在论文的第二部分中,我们使用基于时间依赖的Hartree-Fock方法的激发态分子动力学方法解决了CNT中的激发态现象。这种方法结合了碳纳米管中必不可少的电子-空穴相互作用(激子效应),并可以在非常大的系统(大小不超过一千个原子)中模拟激子振动动力学,同时保留必要的定量精度。基于这种方法,我们详细分析了碳纳米管中牢固结合的第一和第二激子对于许多不同管子的性质,强调了新兴的尺寸尺度定律。激发态的特征离域特性由电荷密度和键序的潜在光诱导变化确定。我们还通过计算Huanb Rhys因子,振动弛豫和斯托克斯位移能来估计不同碳纳米管中的激子-声子耦合及其尺寸定律,这些随管直径的增加而增加。由于其刚性结构,与QD和典型分子材料相比,SWCNT中的激子-声子耦合要弱得多。然而,在基态下,CNT表面会经历与电子-声子相互作用相关的波纹。光激发后的振动松弛减少了波纹,导致管表面局部变形,这类似于在共轭聚合物中形成自陷激子。两种数值方法都提供了可观察到的结果,例如量子点中的弛豫率和Huanb-Rhys因子以及CNT中的斯托克斯位移能,这些都可以通过实验检测。因此,我们的结果可以更好地理解纳米材料中的光诱导电子动力学,指导设计新的实验探针,并有可能导致新的纳米技术应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号