首页> 外文学位 >Liquid -encapsulated Czochralski growth of compound semiconductor crystals with steady and rotating magnetic fields.
【24h】

Liquid -encapsulated Czochralski growth of compound semiconductor crystals with steady and rotating magnetic fields.

机译:具有稳定和旋转磁场的化合物半导体晶体的液体封装Czochralski生长。

获取原文
获取原文并翻译 | 示例

摘要

Integrated circuits and optoelectronic devices are produced on surfaces of thin wafers sliced from a photonic or compound semiconductor crystal. The growth of compound semiconductor crystals is critically important because viable substrates which are compositionally uniform both within a wafer and from wafer to wafer are needed. A dopant is an element that is added to the melt during growth to give the semiconductor crystal specific electrical and/or optical properties. More and better compound semiconductor crystals are needed for advanced optoelectronic devices.;This investigation is focused on developing mathematical and numerical models to understand transport phenomena during bulk growth of compound semiconductor crystals. Since molten semiconductors are electrical conductors, magnetic fields can be used to control the melt motion in order to control the crystal's dopant distribution. Compound semiconductor crystals can be grown from the melt by the liquid-encapsulated Czochralski (LEC) process with a steady magnetic field. During this process, the molten semiconductor (melt) is covered with a layer of liquid encapsulant in order to prevent the escape of the volatile component.;In this dissertation, we treat several different problems. We investigate the coupling of free convections in the melt and liquid encapsulant in a rectangular enclosure with steady vertical and horizontal magnetic fields, and find that these flows are coupled and the competition between these flows determines the direction of the horizontal velocity of the encapsulant-melt interface. We also investigate the dopant transport during the LEC process with a steady axial magnetic field, and find that both the radial and axial homogeneity of the crystal improves as the magnetic field strength decreases. With magnetic stabilization alone, however, the radially-inward flow below the crystal-melt interface does not become large enough to produce acceptable levels of segregation. A transverse magnetic field which rotates around the centerline of the melt can provide an electromagnetic stirring of the melt, and may represent a promising means to produce a crystal with good homogeneity. We investigate LEC growth with a combination of steady and rotating magnetic fields, and find that a rotating field can increase the magnitude of the radially-inward flow below the crystal-melt interface.
机译:在由光子或化合物半导体晶体切成薄片的薄晶片的表面上产生集成电路和光电器件。化合物半导体晶体的生长至关重要,因为需要在晶片内以及晶片之间晶片上成分均一的可行衬底。掺杂剂是在生长期间添加到熔体中以赋予半导体晶体特定的电和/或光学特性的元素。先进的光电器件需要更多,更好的化合物半导体晶体。该研究的重点是开发数学和数值模型,以了解化合物半导体晶体整体生长过程中的传输现象。由于熔融半导体是电导体,因此可以使用磁场来控制熔融运动,以控制晶体的掺杂剂分布。化合物半导体晶体可以通过液体封装的切克劳斯基(LEC)工艺在稳定的磁场下从熔体中生长出来。在此过程中,熔融的半导体(熔体)被一层液体密封剂覆盖,以防止挥发性成分逸出。我们研究了矩形和垂直于水平磁场的矩形壳体中的熔体和液体密封剂中的自由对流耦合,发现这些流是耦合的,并且这些流之间的竞争决定了密封剂-熔体水平速度的方向接口。我们还研究了在LEC过程中具有稳定轴向磁场的掺杂剂传输,发现随着磁场强度的降低,晶体的径向和轴向均匀性均得到改善。然而,仅靠磁稳定作用,在晶体-熔体界面下方的径向向内流动就不会变得足够大以致不能产生可接受的偏析水平。围绕熔体中心线旋转的横向磁场可以提供熔体的电磁搅拌,并且可以代表一种生产具有良好均质性的晶体的有前途的手段。我们研究了稳态和旋转磁场相结合的LEC增长,发现旋转磁场可以增加晶体熔体界面下方径向向内流动的幅度。

著录项

  • 作者

    Yang, Mei.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Mechanical.;Mathematics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号