首页> 外文学位 >Interconnects and Packaging to Enable Autonomous Movable MEMS Microelectrodes to Record and Stimulate Neurons in Deep Brain Structures.
【24h】

Interconnects and Packaging to Enable Autonomous Movable MEMS Microelectrodes to Record and Stimulate Neurons in Deep Brain Structures.

机译:互连和封装使自主可移动MEMS微电极能够记录和刺激深层大脑结构中的神经元。

获取原文
获取原文并翻译 | 示例

摘要

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy's with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 mum displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.
机译:使用微电极植入物对深部大脑结构进行长期监测对于包括皮质神经假体,深部脑刺激和其他神经生物学研究(如疾病状态,学习和记忆,脑图等)在内的新兴临床应用的成功至关重要。然而,当前由于微电极技术在长期研究中的性能和可靠性不一致,因此不足以达到这些临床里程碑。在上述所有应用中,重要的是要了解技术以及生物过程带来的局限性和要求。植入式微电子机械系统(MEMS)技术的最新进展具有巨大的潜力,并为长期研究提供了许多以前无法实现的机会。该项目的总体目标是开发大规模的自治,可移动,微型接口,该接口可以搜索和监视/刺激可精确定位的神经元和神经元网络的大型集成体,这些集成体可用于行为动物的脑图绘制。但是,与封装和互连相关的技术(制造)方面存在严峻挑战,其中包括:具有可移动微结构的硅芯片的芯片级封装技术缺乏当前的行业标准,用于延长电流微电极的不兼容的微键合技术到达深部大脑结构的长度,无法实现可植入装置与生物组织和体液(即脑脊液(CSF),血液等)的气密隔离。具体目的是:1)优化和自动化MEMS器件的芯片级封装,使其具有与键合,工艺温度和压力不符的传统行业标准的独特要求,以实现可扩展性2)开发一种新颖的微键合技术以扩展当前多晶硅微电极的长度以达到并监视深部大脑结构3)设计和开发高通量包装机制,以构建密集的可移动微电极阵列。结合独特的微粘接技术,包括导电热固性环氧树脂和密封支撑结构,以及高度优化的半自动90分钟倒装芯片封装工艺,我现在将先前报道的可移动微电极阵列的功能扩展到了将所需长度的常规不锈钢和Pt / Ir微电极阵列粘合到可操纵的多晶硅轴上。我在严格的台式测试中测试了可扩展的原型,包括阻抗测量,加速老化和无损测试,以评估长期植入下微键的电气和机械稳定性。我提出了一种3D打印包装方法,该方法可实现各种各样的电极配置,例如矩形或圆形阵列配置或其他任意几何形状,最适合大脑的特定区域,电极间距离低至25 um,具有前所未有的能力寻找和记录/刺激深达10毫米深(具有6毫米位移分辨率)的深层大脑结构中的目标单神经元。这种由计算机控制的可移动深层大脑电极的优点是,可以通过微电极周围的神经胶质鞘层移动来恢复神经连接,抵消信号幅度的变化,并能够在精确定位的大脑各层同时进行记录/刺激,从而具有潜在的能力。

著录项

  • 作者

    Palaniswamy, Sivakumar.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biomedical engineering.;Neurosciences.;Robotics.
  • 学位 M.S.
  • 年度 2016
  • 页码 67 p.
  • 总页数 67
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号