首页> 外文学位 >Neural recordings in the brain using novel movable MEMS microelectrode arrays.
【24h】

Neural recordings in the brain using novel movable MEMS microelectrode arrays.

机译:使用新型可移动MEMS微电极阵列在大脑中进行神经记录。

获取原文
获取原文并翻译 | 示例

摘要

Monitoring neural activity using microelectrodes holds tremendous opportunities to help create neural prosthetic devices. Microelectrodes have been used over the past 50 years, however, over the past couple of decades there has been a great demand to increase the longevity of these implants. Neural prosthetic devices often require the user to record from a group of neurons, however over time the neurons can migrate or move to a new location. Moveable microelectrodes that use microelectrical-mechanical systems (MEMS) actuator technology were used to solve these issues and increase the ability to maintain functionally stable cortical recordings. Moveable electrodes have been around for several years; however all of them use extremely large motors, which limit their use for chronic experiments. By using MEMS technology, the motors are able to reduce to micron size dimensions. However, the down side to using MEMS devices is that they need very reliable and durable packaging in order to operate. The MEMS devices are fabricated using the SUMMIT-V process at Sandia National Laboratory, and includes a 5-layer n-type doped polysilicon process. The actuators move the microelectrodes off the edge of the chip and into the brain, where they can be moved bi-directionally after implantation. This device is the first MEMS device with moveable components extending off the edge of the chip, which creates unique packaging challenges because traditional hermetic packaging is not feasible. This study validated the ability of highly doped n-type polysilicon microelectrodes as a chronic neural recording device. Signals were obtained from stationary microelectrodes for a period of up to 12 weeks with signal to noise ratios (SNR) of ∼15 dB. Corrosion effects under physiological conditions using various doping and fabricated polysilicon films were also studied. This study also shows a novel encapsulation technique that prevents fluid entry into a moveable microelectrode device. This study validates the ability to move the microelectrodes post implant in order to maintain functionally stable unit activity during semi-chronic recordings. The semi-chronic recordings show an average SNR of 14.61 +/- 5.2 and 18.13 +/- 4.99 dB before and alter movement respectively. This study also highlights the design and fabrication of a novel flexible chip-scale-package and bonding technique for implantable MEMS devices.
机译:使用微电极监测神经活动拥有巨大的机会来帮助创建神经修复设备。在过去的50年中一直使用微电极,但是在过去的几十年中,对提高这些植入物的寿命有很大的需求。神经修复设备通常需要用户从一组神经元中进行记录,但是随着时间的流逝,神经元可以迁移或移动到新的位置。使用微机电系统(MEMS)致动器技术的可移动微电极用于解决这些问题,并提高了维持功能稳定的皮质记录的能力。可移动电极已经存在了好几年。但是它们都使用超大型电动机,这限制了它们在长期实验中的使用。通过使用MEMS技术,电机能够减小到微米尺寸。但是,使用MEMS器件的不利之处在于它们需要非常可靠和耐用的封装才能运行。 MEMS器件使用桑迪亚国家实验室的SUMMIT-V工艺制造,并包括5层n型掺杂多晶硅工艺。致动器将微电极从芯片边缘移入大脑,在植入后可以在其中双向移动。该器件是第一款具有可移动组件延伸至芯片边缘之外的MEMS器件,由于传统的气密封装不可行,因此带来了独特的封装挑战。这项研究验证了高掺杂n型多晶硅微电极作为慢性神经记录设备的能力。从固定微电极获得的信号长达12周,信噪比(SNR)约为15 dB。还研究了在生理条件下使用各种掺杂和制造的多晶硅膜的腐蚀效果。这项研究还显示了一种新颖的封装技术,可以防止流体进入可移动的微电极设备。这项研究证实了在植入后移动微电极的能力,以便在半连续记录过程中保持功能稳定的单位活动。半定时记录分别显示运动之前和改变运动之前的平均SNR为14.61 +/- 5.2和18.13 +/- 4.99 dB。这项研究还重点介绍了用于植入式MEMS器件的新型柔性芯片级封装和键合技术的设计和制造。

著录项

  • 作者

    Jackson, Nathan Morrow.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biology Neuroscience.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号