首页> 外文学位 >Analysis of rigidity, stability, and activity in Thermotoga neapolitana adenylate kinase.
【24h】

Analysis of rigidity, stability, and activity in Thermotoga neapolitana adenylate kinase.

机译:分析Thermotoga neapolitana腺苷酸激酶的刚性,稳定性和活性。

获取原文
获取原文并翻译 | 示例

摘要

Proteins from hyperthermophiles are adapted to be stable and active at temperatures ≥80°C, conditions in which mesophilic proteins denature. Because the sequence and structural similarity between hyperthermophilic proteins and their mesophilic homologues is very high, it is not readily apparent as to what causes the enhanced stability of hyperthermophilic proteins. Understanding the mechanisms of protein thermostability has been one of the most intensely studied problems in the last three decades. The activity-temperature profiles of hyperthermophilic and mesophilic proteins show that the profile is right-shifted for hyperthermophiles. In other words, they attain similar activity as their mesophilic homologues at a much higher temperature and they are inactive at low temperatures. These facts have lead to the proposal of the 'rigidity' hypothesis regarding hyperthermophilic proteins. Hyperthermophilic proteins achieve high thermostability through increased structural rigidity. These proteins are highly rigid in their native structure that allows them to maintain their structural integrity at high temperatures. The increased rigidity of hyperthermophilic proteins freezes out fluctuations required for activity at room temperature making them inactive at low temperatures.; The studies described here use adenylate kinase from the hyperthermophilic bacteria Thermotoga neapolitana (TNAK) as a model system in which to test the rigidity hypothesis. What makes TNAK a really interesting model system is the fact that it is highly active at 30°C, an unusual property for a hyperthermophilic protein. Special attention was paid to the techniques used to investigate motions in TNAK. NMR and MD simulations, techniques that can access a wide range of timescales in atomic detail, were used to compare dynamics in TNAK with its mesophilic homologue from Escherichia coli (ECAK).; Results from 15N NMR relaxation data shows that TNAK is uniformly more rigid than ECAK in the ps-ns timescales as well as mus timescale. Although, overall, TNAK has higher rigidity than ECAK, several residues in the AMP-binding and lid domains exhibit high flexibility in the ps-ns timescale. Residues in the hinge regions between the lid and core domains of TNAK exhibit flexibility in the ps-ns timescales as well mus timescales. H-D exchange data, which provide information on timescales greater than seconds, show that TNAK's lid and AMP-binding domains are more stabilized compared to ECAK. Again, in spite of this increased rigidity, several residues in these domains of TNAK show considerable local fluctuations. (Abstract shortened by UMI.)
机译:来自高温嗜热菌的蛋白质适合在温度≥80°C(嗜温性蛋白质变性的条件)下稳定且具有活性。由于超嗜热蛋白与其嗜温同源物之间的序列和结构相似性非常高,因此,什么原因导致超嗜热蛋白稳定性增强尚不明显。在过去的三十年中,了解蛋白质热稳定性的机制一直是研究最深入的问题之一。嗜热和嗜温蛋白的活性-温度曲线表明,对于嗜热菌,该曲线是右移的。换句话说,它们在更高的温度下获得与其嗜温同源物相似的活性,而在低温下则无活性。这些事实导致提出了关于超嗜热蛋白的“刚性”假说。嗜热蛋白通过增加结构刚度来实现高热稳定性。这些蛋白质在其天然结构中具有很高的刚性,从而使其在高温下能够保持其结构完整性。高嗜热蛋白的刚性增加,冻结了室温下活性所需的波动,使其在低温下无活性。这里描述的研究使用来自嗜热嗜热菌嗜热菌(Thermotoga neapolitana,TNAK)的腺苷酸激酶作为模型系统,在其中测试刚性假设。使TNAK成为真正有趣的模型系统的原因是,它在30°C时具有很高的活性,这是超嗜热蛋白的不寻常特性。特别注意了用于研究TNAK中运动的技术。 NMR和MD模拟是可以访问原子时间范围广泛的时标的技术,用于比较TNAK的动力学和大肠杆菌的嗜温同源物(ECAK)。 15N NMR弛豫数据的结果表明,在ps-ns时标和mus时标中,TNAK均比ECAK坚硬得多。尽管总的来说,TNAK比ECAK具有更高的刚性,但AMP结合和盖结构域中的一些残基在ps-ns时标中显示出高度的灵活性。 TNAK的盖子和核心域之间的铰链区域中的残基在ps-ns时标和mus时标中显示出灵活性。 H-D交换数据可提供大于秒的时标信息,表明TNAK的盖子和AMP结合域比ECAK更稳定。同样,尽管刚性增加了,但TNAK的这些域中的一些残基仍表现出相当大的局部波动。 (摘要由UMI缩短。)

著录项

  • 作者

    Krishnamurthy, Harini.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Biology Molecular.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号