首页> 外文学位 >Optical MEMS switches: Theory, design, and fabrication of a new architecture.
【24h】

Optical MEMS switches: Theory, design, and fabrication of a new architecture.

机译:光学MEMS开关:新架构的理论,设计和制造。

获取原文
获取原文并翻译 | 示例

摘要

The scalability and cost of microelectromechanical systems (MEMS) optical switches are now the important factors driving the development of MEMS optical switches technology. The employment of MEMS in the design and fabrication of optical switches through the use of micromachining fabricated micromirrors expands the capability and integrity of optical backbone networks. The focus of this dissertation is on the design, fabrication, and implementation of a new type of MEMS optical switch that combines the advantages of both 2-D and 3-D MEMS switch architectures.;This research presents a new digital MEMS switch architecture for 1 x N and N x N optical switches. The architecture is based on a new microassembled smart 3-D rotating inclined micromirror (3DRIM). The 3DRIM is the key device in the new switch architectures.;The 3DRIM was constructed through a microassembly process using a passive microgripper, key, and inter-lock (PMKIL) assembly system. An electrostatic micromotor was chosen as the actuator for the 3DRIM since it offers continuous rotation as well as small, precise step motions with excellent repeatability that can achieve repeatable alignment with minimum optical insertion loss between the input and output ports of the switch. In the first 3DRIM prototype, a 200 x 280 mum micromirror was assembled on the top of the electrostatic micromotor and was supported through two vertical supportposts. The assembly technique was then modified so that the second prototype can support micromirrors with dimensions up to 400 x 400 mum. Both prototypes of the 3 DRIM are rigid and stable during operation. Also, rotor pole shaping (RPS) design technique was introduced to optimally reshape the physical dimensions of the rotor pole in order to maximize the generated motive torque of the micromotor and minimize the required driving voltage signal. The targeted performance of the 3DRIM was achieved after several PolyMUMPs fabrication runs.;The new switch architecture is neither 2-D nor 3-D. Since it is composed of two layers, it can be considered 2.5-D. The new switch overcomes many of the limitations of current traditional 2-D MEMS switches, such as limited scalability and large variations in the insertion loss across output ports. The 1 x N MEMS switch fabric has the advantage of being digitally operated. It uses only one 3DRIM to switch the light signal from the input port to any output port. The symmetry employed in the switch design gives it the ability to incorporate a large number of output ports with uniform insertion losses over all output channels, which is not possible with any available 2-D or 3-D MEMS switch architectures. The second switch that employs the 3DRIM is an N x N optical cross-connect (OXC) switch. The design of an N x N OXC uses only 2 N of the 3DRIM, which is significantly smaller than the N2 switching micromirrors used in 2-D MEMS architecture. The new N x N architecture is useful for a medium-sized OXC and is simpler than 3-D architecture.;A natural extension of the 3DRIM will be to extend its application into more complex optical signal processing, i.e., wavelength-selective switch. A grating structures have been selected to explore the selectivity of the switch. For this reason, we proposed that the surface of the micromirror being replaced by a suitable gratings instead of the flat reflective surface. Thus, this research has developed a rigorous formulation of the electromagnetic scattered near-field from a general-shaped finite gratings in a perfect conducting plane. The formulation utilizes a Fourier-transform representation of the scattered field for the rapid convergence in the upper halfspace and the staircase approximation to represent the field in the general-shaped groove. This method provides a solution for the scattered near-field from the groove and hence is considered an essential design tool for near-field manipulation in optical devices. Furthermore, it is applicable for multiple grooves with different profiles and different spacings. Each groove can be filled with an arbitrary material and can take any cross-sectional profile, yet the solution is rigorous because of the rigorous formulations of the fields in the upper-half space and the groove reigns. The efficient formulation of the coefficient matrix results in a banded-matrix form for an efficient and time-saving solution.
机译:现在,微机电系统(MEMS)光开关的可扩展性和成本是驱动MEMS光开关技术发展的重要因素。通过使用微加工制造的微镜来设计和制造光开关,MEMS的使用扩展了光骨干网的能力和完整性。本论文的重点是结合二维和3-D MEMS开关架构的优点的新型MEMS光开关的设计,制造和实现。 1 x N和N x N光开关。该体系结构基于新的微装配智能3-D旋转倾斜微镜(3DRIM)。 3DRIM是新开关体系结构中的关键设备。3DRIM是通过使用被动式微抓手,钥匙和互锁(PMKIL)组装系统的微型组装过程构造而成的。静电微电机被选作3DRIM的执行器,因为它具有连续旋转以及小的,精确的步进运动,并具有出色的可重复性,可以实现可重复的对准,并且在开关的输入和输出端口之间具有最小的光学插入损耗。在第一个3DRIM原型中,一个200 x 280微米的微镜组装在静电微电机的顶部,并通过两个垂直支柱支撑。然后修改了组装技术,以便第二个原型可以支持尺寸最大为400 x 400微米的微镜。 3 DRIM的两个原型在运行过程中都非常坚固且稳定。同样,引入了转子磁极整形(RPS)设计技术,以最佳地重塑转子磁极的物理尺寸,从而使微电机产生的原动力最大,并使所需的驱动电压信号最小。 3DRIM的目标性能是在几次PolyMUMP制造过程中实现的。新的开关架构既不是2-D也不是3-D。由于它由两层组成,因此可以将其视为2.5-D。新型开关克服了当前传统2D MEMS开关的许多局限性,例如有限的可扩展性和跨输出端口的插入损耗的较大变化。 1 x N MEMS交换结构具有数字化操作的优势。它仅使用一个3DRIM将光信号从输入端口切换到任何输出端口。开关设计中采用的对称性使其能够合并所有输出端口,并且在所有输出通道上具有均匀的插入损耗,这是任何可用的2D或3D MEMS开关架构所无法实现的。使用3DRIM的第二个开关是N x N光学交叉连接(OXC)开关。 N x N OXC的设计仅使用2 N的3DRIM,远小于2-D MEMS体系结构中使用的N2开关微镜。新的N x N架构可用于中等大小的OXC,并且比3-D架构更简单。; 3DRIM的自然扩展将是将其应用扩展到更复杂的光信号处理(即波长选择开关)中。已经选择了光栅结构来探索开关的选择性。因此,我们建议用合适的光栅代替平面镜面代替微镜表面。因此,本研究从理想形状的平面中的普通形状的有限光栅对电磁散射近场进行了严格的阐述。该公式利用了散射场的傅立叶变换表示法来实现上半空间的快速收敛,并利用阶梯近似法表示了一般形状的凹槽中的场。该方法为从凹槽中散射的近场提供了解决方案,因此被认为是光学设备中近场操纵的必不可少的设计工具。此外,它适用于具有不同轮廓和不同间距的多个凹槽。每个凹槽都可以用任意材料填充,并且可以采用任何横截面轮廓,但是由于上半空间中的场的公式很严格,所以解决方案很严格,因此凹槽成为主流。系数矩阵的有效公式表示带状矩阵形式,是一种高效且节省时间的解决方案。

著录项

  • 作者

    Basha, Mohamed A.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号