首页> 外文学位 >Iterative learning control for industrial robots with end effector sensing.
【24h】

Iterative learning control for industrial robots with end effector sensing.

机译:具有末端执行器感应的工业机器人的迭代学习控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation considers precise Tool Center Point (TCP) tracking for industrial robots, i.e. tracking of reference trajectories in the Cartesian-space by the center point of a tool at the end effector of a robot. The difficulty of the control are due to disturbances and uncertainties in the reducers, such as non-linear friction, backlash, transmission error, and flexibility of the reducers. Under an assumption that a robot repeat the same tracking task repeatedly, we consider Iterative Learning Control (ILC) to accomplish precise TPC tracking.;We focus on the frequency domain design of ILC and we develop a systematic design method for ILC based on Hinfinity synthesis. First we present the LFT (Linear Fraction Transformation)-based ILC design method, which was originally proposed for control of wafer scanners. We extend the original design to be able to apply non-causal learning as well as causal learning. We also propose an LMI (Linear Matrix Inequality)-based ILC design method. This method utilizes zero-phase weighting functions and realizes low order controllers which ensure robustness to disturbances and uncertainties. The controller performance is verified by experiments on an industrial robot.;We introduce link-side ILC for industrial robots, i.e. ILC utilizing the link-side measurement for tracking in the Cartesian-space by the LMI-based ILC. ILC may be applied to each joint of a robot separately: i.e. Single-Input Single-Output (SISO) ILC design. We also consider Multiple-Input Multiple-Output (MIMO) ILC design, since Cartesian-space motion is a composite of multiple-joint motions. We divide the discussion of the link-side MIMO ILC in the Cartesian-space into three parts. First is the investigation of link-side ILC for a single-joint model. Secondly, we introduce MIMO ILC in the joint-space to compare the performance of SISO ILC and MIMO ILC. The last part is the investigation of ILC in the Cartesian-space which involves inverse kinematics of robots. All the ILC designs are evaluated by simulations.;The third part of this dissertation is on vision-based ILC, which utilizes vision data as link-side measurement. The vision sensors provide the error between the TCP position and the target reference, but, they do not provide the TCP position itself. In this part, we estimate the desired link position to cancel the error in Cartesian-space by utilizing the kinematic relationship between the joint angle and the vision data. The controller performance is verified on a industrial robot.
机译:本文考虑了工业机器人的精确工具中心点(TCP)跟踪,即通过机器人末端执行器上工具的中心点在笛卡尔空间中跟踪参考轨迹。控制的困难归因于减速器的干扰和不确定性,例如非线性摩擦,齿隙,传动误差和减速器的柔韧性。在机器人重复重复相同的跟踪任务的假设下,我们考虑使用迭代学习控制(ILC)来完成精确的TPC跟踪。;我们专注于ILC的频域设计,并基于Hinfinity合成开发了系统的ILC设计方法。首先,我们介绍基于LFT(线性分数变换)的ILC设计方法,该方法最初是为控制晶片扫描仪而提出的。我们扩展了原始设计,以便能够应用非因果学习和因果学习。我们还提出了一种基于LMI(线性矩阵不等式)的ILC设计方法。该方法利用了零相位加权功能,并实现了低阶控制器,从而确保了对干扰和不确定性的鲁棒性。通过工业机器人上的实验验证了控制器的性能。;我们介绍了工业机器人的链接侧ILC,即ILC利用链接侧测量通过基于LMI的ILC在笛卡尔空间中进行跟踪。 ILC可以分别应用于机器人的每个关节:即单输入单输出(SISO)ILC设计。我们还考虑了多输入多输出(MIMO)ILC设计,因为笛卡尔空间运动是多关节运动的组合。我们将笛卡尔空间中链路侧MIMO ILC的讨论分为三个部分。首先是针对单关节模型的链接侧ILC的研究。其次,我们在联合空间中引入了MIMO ILC,以比较SISO ILC和MIMO ILC的性能。最后一部分是笛卡尔空间中ILC的研究,其中涉及机器人的逆运动学。通过仿真评估了所有的ILC设计。本文的第三部分是基于视觉的ILC,该ILC利用视觉数据作为链路侧测量。视觉传感器提供TCP位置和目标参考之间的误差,但是它们不提供TCP位置本身。在这一部分中,我们通过利用关节角度和视觉数据之间的运动关系来估计所需的链接位置,以消除笛卡尔空间中的错误。在工业机器人上验证了控制器的性能。

著录项

  • 作者

    Inaba, Kiyonori.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号