首页> 外文学位 >Learning of Task-specific Control Policies for Industrial Robots.
【24h】

Learning of Task-specific Control Policies for Industrial Robots.

机译:学习工业机器人的任务特定控制策略。

获取原文
获取原文并翻译 | 示例

摘要

Today's industrial robots are designed to be able to execute versatile tasks like a human. When deploying the robots to production lines, however, they only need to perform well for a narrowly defined task. A natural question to ask is whether the robots can tailor themselves for different working conditions. This dissertation focuses on developing learning and optimization algorithms that allow robots to achieve higher overall performance for a particular application. The difficulties of this work arise from the facts that 1) most robots have no end-effector sensors, 2) high robot precision and productivity may compromise the robot service life, and 3) robot trajectories in a single application may variate. In regards to these issues, this dissertation proposes a probabilistic approach to optimize the robot models. The approach solves various parameter learning problems in sensor-limited robots by Bayesian inference. Additionally, a trajectory optimization algorithm is introduced to minimize the robot life cost along a robot path. This dissertation also presents policy learning methods that can mimic the standard iterative learning controller for a group of robot motion. Experimental results on FANUC industrial manipulators show that the proposed methods effectively adjust the control policies for different tasks and make the robots outperform the traditional ones. In addition, they perform comparably to the commercial solutions while having the advantage of not requiring an additional learning action every time when the trajectory is changed. A number of subspace learning based Q-filters are also introduced for removing the undesired effects during the learning process. All algorithms are designed to meet industrial needs such as light computation. Thus, they can be integrated into commercially available robots without special hardware and software requirements.
机译:当今的工业机器人被设计为能够执行像人类一样的多功能任务。但是,将机器人部署到生产线时,它们只需要很好地执行狭窄定义的任务即可。一个自然要问的问题是,机器人是否可以针对不同的工作条件进行调整。本文致力于开发学习和优化算法,使机器人可以为特定应用实现更高的整体性能。这项工作的困难源于以下事实:1)大多数机器人都没有末端执行器传感器; 2)机器人精度高且生产率高可能会损害机器人的使用寿命,并且3)单个应用中的机器人轨迹可能会发生变化。针对这些问题,本文提出了一种概率模型来优化机器人模型。该方法通过贝叶斯推理解决了传感器受限机器人中的各种参数学习问题。另外,引入了轨迹优化算法以最小化沿机器人路径的机器人寿命成本。本文还提出了一种策略学习方法,可以模拟一组机器人运动的标准迭代学习控制器。在FANUC工业机械手上的实验结果表明,所提出的方法可以有效地调整针对不同任务的控制策略,并使机器人性能优于传统机器人。另外,它们具有与商业解决方案相当的性能,同时具有每次更改轨迹时都不需要额外的学习动作的优点。还引入了许多基于子空间学习的Q滤波器,以消除学习过程中的不良影响。所有算法均旨在满足工业需求,例如光计算。因此,它们可以集成到市售的机器人中,而无需特殊的硬件和软件要求。

著录项

  • 作者

    Lin, Chung-Yen.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Robotics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号