首页> 外文学位 >Issues of ESD protection in nano-scale CMOS.
【24h】

Issues of ESD protection in nano-scale CMOS.

机译:纳米级CMOS中的ESD保护问题。

获取原文
获取原文并翻译 | 示例

摘要

Aggressive downsizing of individual transistors continues to improve the performance of integrated circuits. However, as the transistors get smaller, they become more vulnerable to damage by high current and high voltage Electrostatic Discharges (ESD). As technology scales down, among other things, new materials such as high-k gate dielectrics are incorporated into the modern chip fabrication technologies and Silicon-on-Insulator (SOI) technology is gaining acceptance. These technology advances make ESD protection of silicon chips ever more necessary and challenging. Consequently, the present dissertation focuses on ESD related issues in nano-scale CMOS technologies.;The thesis begins with the investigation of high-k gate dielectric breakdown under ESD-like stress. The stress configuration for transistors in the input receiver will be considered first. It is confirmed that high-k gate oxide breakdown is catastrophic under ESD-like stress. Using the constant voltage stress (CVS) method, the gate oxide breakdown voltages (VBD) of NMSOFETs and PMOSFETs are compared under different stress polarities, in order to identify the worst case scenario. The results are also compared with SiON gate dielectric devices. Next, high-k gate breakdown in the output driver is explored. The results imply that the input receiver is more susceptible (than output driver) to failure due to ESD induced gate dielectric breakdown. Measurement results also show that VBD obtained by the transmission line pulsing method (TLP) is only slightly smaller than that obtained by the CVS method. Methodologies to improve the breakdown immunity are then proposed with the support of experimental results.;The dissertation then focuses on the degradation of NMOSFETs with high-k gate under non-destructive ESD-like stress. For the stress configuration emulating the output driver, little degradation was observed until the device failed by drain-to-source filamentation. By contrast, for the stress configuration emulating the input receiver, degradations of threshold voltage ( Vt), drain saturation current (Idsat) and Si/gate oxide interface were observed. The degradations increase with the effective gate oxide thickness and are more severe under positive stress polarity. Different from Positive Bias Temperature Instability (PBTI) stress, the threshold voltage shift depends on temperature rather weakly, indicating a new dominant charge trapping mechanism active on the time scale of ESD events. These results are then compared with those obtained for transistors with SiON gate dielectric. In addition to Vt, I dsat and interface degradation, the impact of the stress on the gate leakage current and on the subsequent PBTI degradation kinetics is also studied.;Finally, the dissertation presents a thorough investigation of the field effect diode (FED) with the aim to explore its potential for ESD protection applications in SOI technology. It is shown that the doping type and concentration under the two gates has an important impact on the device operation. By careful sizing and doping, FED devices with reasonable breakdown voltage values can be achieved at gate voltage values compatible with the latest technology.
机译:各个晶体管的大幅缩小尺寸继续改善集成电路的性能。但是,随着晶体管变得越来越小,它们变得更容易受到高电流和高电压静电放电(ESD)的损坏。随着技术的缩减,除其他外,诸如高k栅极电介质之类的新材料已被并入现代芯片制造技术中,并且绝缘体上硅(SOI)技术也得到了认可。这些技术的进步使硅芯片的ESD保护变得更加必要和具有挑战性。因此,本论文着重研究了纳米CMOS技术中与ESD有关的问题。本论文从研究类ESD下的高k栅介质击穿开始。首先考虑输入接收器中晶体管的应力配置。可以确定的是,在类似ESD的应力下,高k栅极氧化物的击穿是灾难性的。使用恒定电压应力(CVS)方法,比较了不同应力极性下NMSOFET和PMOSFET的栅极氧化层击穿电压(VBD),以便确定最坏的情况。还将结果与SiON栅极介电器件进行了比较。接下来,研究输出驱动器中的高k栅极击穿。结果表明,由于ESD引起的栅极电介质击穿,输入接收器(比输出驱动器)更容易发生故障。测量结果还显示,通过传输线脉冲法(TLP)获得的VBD仅比通过CVS方法获得的略小。在实验结果的支持下,提出了提高抗击穿能力的方法。论文的重点是在无破坏性的ESD应力下,高k栅极NMOSFET的退化。对于模拟输出驱动器的应力配置,观察到几乎没有降级,直到器件因漏源纤丝故障而失效。相比之下,对于模拟输入接收器的应力配置,观察到阈值电压(Vt),漏极饱和电流(Idsat)和Si /栅极氧化物界面的劣化。随着有效栅氧化层厚度的增加,这种劣化会增加,在正应力极性下,这种劣化会更加严重。与正偏压温度不稳定性(PBTI)应力不同,阈值电压偏移相当小地取决于温度,这表明在ESD事件的时间范围内,有一种活跃的新的电荷捕获机制。然后将这些结果与具有SiON栅极电介质的晶体管获得的结果进行比较。除了Vt,I dsat和界面退化之外,还研究了应力对栅极泄漏电流以及随后的PBTI退化动力学的影响。最后,本文对场效应二极管(FED)进行了深入研究。旨在探索其在SOI技术中ESD保护应用中的潜力。结果表明,两个栅极的掺杂类型和浓度对器件的工作有重要影响。通过仔细的尺寸和掺杂,可以在与最新技术兼容的栅极电压值下获得具有合理击穿电压值的FED器件。

著录项

  • 作者

    Yang, Yang.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号