首页> 外文学位 >Engineering nanoparticles and nanoparticle-carbon nanotube hybrid structures for miniaturized gas sensors.
【24h】

Engineering nanoparticles and nanoparticle-carbon nanotube hybrid structures for miniaturized gas sensors.

机译:工程化的纳米颗粒和纳米颗粒-碳纳米管混合结构,用于小型化气体传感器。

获取原文
获取原文并翻译 | 示例

摘要

Miniaturized gas sensors that rapidly and accurately detect and differentiate trace amount of individual gases or gas mixtures are extremely attractive for many applications, including environmental monitoring, medical diagnosis, food processing, detection of explosives for national security, and lab-on-a-chip analytical devices. The objective of this study is to fabricate and characterize miniaturized gas sensors using tin oxide aerosol nanoparticles and hybrid structures of tin oxide nanoparticles supported on carbon nanotubes (CNTs).; A mini-arc plasma source has been developed to synthesize nonagglomerated and crystalline pure/doped tin oxide nanoparticles with controlled size. The nanoparticles are formed by direct vaporization of solid precursors followed by a rapid quenching. The electrical charges carried by as-produced aerosol nanoparticles facilitate the manipulation of nanoparticles using electrostatic force. An electrostatic precipitator (ESP) has been designed and constructed to perform electrostatic force directed assembly (ESFDA) of aerosol nanoparticles onto various substrates. The collection efficiency of the ESP has been predicted using simplified analytical models. The ESFDA technique has been used to successfully assemble nanoparticles onto random or vertically-aligned CNTs. An intrinsic nanoparticle size selection has been observed during the assembly process. The size distribution and the areal density of nanoparticles on CNTs can be controlled with electric field, flow residence time, and assembly time.; Miniaturized gas sensors based on tin oxide nanoparticles alone and tin oxide nanoparticle-CNT hybrid structures have been successfully fabricated by the ESFDA assembly of tin oxide nanoparticles onto electron-beam lithographically patterned interdigitated electrodes with or without CNTs. The nanoparticle gas sensor demonstrates good response and sensitivity at elevated operating temperatures around 250°C when exposed to low concentration ethanol vapor and hydrogen in air. The multiwalled CNT (MWCNT)-electrode contact can be improved by local Joule heating and annealing in an inert gas. The nanoparticle-MWCNT device shows great potential to sense low concentration gases (NO2,H 2, and CO) at room temperature.
机译:快速,准确地检测和区分痕量的各种气体或混合气体的微型气体传感器在许多应用中具有极大的吸引力,包括环境监测,医学诊断,食品加工,国家安全爆炸物的检测以及芯片实验室分析装置。这项研究的目的是使用氧化锡气溶胶纳米颗粒和负载在碳纳米管(CNT)上的氧化锡纳米颗粒的杂化结构来制造和表征小型化的气体传感器。已经开发了微弧等离子体源,以合成具有受控尺寸的非团聚和结晶的纯/掺杂的氧化锡纳米颗粒。通过直接蒸发固体前体,然后快速淬火来形成纳米颗粒。产生的气溶胶纳米颗粒携带的电荷有助于利用静电力对纳米颗粒进行操作。已经设计和构造了静电除尘器(ESP),以执行将气溶胶纳米颗粒静电吸附到各种基材上的方法(ESFDA)。 ESP的收集效率已使用简化的分析模型进行了预测。 ESFDA技术已用于成功地将纳米颗粒组装到随机或垂直排列的CNT上。在组装过程中观察到固有的纳米颗粒尺寸选择。可以通过电场,流动停留时间和组装时间来控制纳米粒子在CNT上的尺寸分布和面密度。通过将氧化锡纳米粒子的ESFDA组装到带有或不带有CNT的电子束光刻图案化叉指电极上,已经成功地制造了仅基于氧化锡纳米粒子和氧化锡纳米粒子-CNT杂化结构的微型气体传感器。当暴露于低浓度乙醇蒸气和氢气中时,纳米粒子气体传感器在约250°C的较高工作温度下显示出良好的响应和灵敏度。可以通过在惰性气体中进行局部焦耳加热和退火来改善多壁CNT(MWCNT)电极的接触。纳米MWCNT装置显示出在室温下感测低浓度气体(NO2,H 2和CO)的巨大潜力。

著录项

  • 作者

    Lu, Ganhua.;

  • 作者单位

    The University of Wisconsin - Milwaukee.;

  • 授予单位 The University of Wisconsin - Milwaukee.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号