首页> 外文学位 >Human activity recognition and pathological gait pattern identification.
【24h】

Human activity recognition and pathological gait pattern identification.

机译:人类活动识别和病理步态识别。

获取原文
获取原文并翻译 | 示例

摘要

Human activity analysis has attracted great interest from computer vision researchers due to its promising applications in many areas such as automated visual surveillance, computer-human interactions, and motion-based identification and diagnosis.; This dissertation presents work in two areas: general human activity recognition from video, and human activity analysis for the purpose of identifying pathological gait from both 3D captured data and from video.; Even though the research in human activity recognition has been going on for many years, still there are many issues that need more research. This includes the effective representation and modeling of human activities and the segmentation of sequences of continuous activities. In this thesis we present an algorithm that combines shape and motion features to represent human activities. In order to handle the activity recognition from any viewing angle we quantize the viewing direction and build a set of Hidden Markov Models (HMMs), where each model represents the activity from a given view. Finally, a voting based algorithm is used to segment and recognize a sequence of human activities from video. Our method of representing activities has good attributes and is suitable for both low resolution and high resolution video. The voting based algorithm performs the segmentation and recognition simultaneously. Experiments on two sets of video clips of different activities show that our method is effective.; Our work on identifying pathological gait is based on the assumption of gait symmetry. Previous work on gait analysis measures the symmetry of gait based on Ground Reaction Force data, stance time, swing time or step length. Since the trajectories of the body parts contain information about the whole body movement, we measure the symmetry of the gait based on the trajectories of the body parts. Two algorithms, which can work with different data sources, are presented. The first algorithm works on 3D motion-captured data and the second works on video data. Both algorithms use support vector machine (SVM) for classification. Each of the two methods has three steps: the first step is data preparation, i.e., obtaining the trajectories of the body parts; the second step is gait representation based on a measure of gait symmetry; and the last step is SVM based classification. For 3D motion-captured data, a set of features based on Discrete Fourier Transform (DFT) is used to represent the gait. We demonstrate the accuracy of the classification by a set of experiments that shows that the method for 3D motion-captured data is highly effective. For video data, a model based tracking algorithm for human body parts is developed for preparing the data. Then, a symmetry measure that works on the sequence of 2D data, i.e. sequence of video frames, is derived to represent the gait. We performed experiments on both 2D projected data and real video data to examine this algorithm. The experimental results on 2D projected data showed that the presented algorithm is promising for identifying pathological gait from video. The experimental results on the real video data are not good as the results on 2D projected data. We believe that better results could be obtained if the accuracy of the tracking algorithm is improved.
机译:人类活动分析由于其在许多领域中的应用前景广阔而吸引了计算机视觉研究人员的兴趣,例如自动化视觉监视,计算机人机交互以及基于运动的识别和诊断。本文介绍了两个领域的工作:从视频中识别一般人类活动,以及从3D捕获数据和视频中识别病理步态的人类活动分析。尽管人类活动识别的研究已经进行了很多年,但仍有许多问题需要更多的研究。这包括人类活动的有效表示和建模以及连续活动序列的分割。在本文中,我们提出了一种结合形状和运动特征来表示人类活动的算法。为了从任何角度处理活动识别,我们对观看方向进行量化,并建立一组隐马尔可夫模型(HMM),其中每个模型都代表给定视图中的活动。最后,基于投票的算法用于从视频中分割和识别一系列人类活动。我们的活动表示方法具有良好的属性,适用于低分辨率和高分辨率视频。基于投票的算法同时执行分割和识别。对两组不同活动的视频片段进行的实验表明,我们的方法是有效的。我们确定病理性步态的工作是基于步态对称性的假设。以前的步态分析工作是根据地面反作用力数据,站立时间,挥杆时间或步长来测量步态的对称性。由于身体部位的轨迹包含有关整个人体运动的信息,因此我们根据身体部位的轨迹来测量步态的对称性。提出了两种可用于不同数据源的算法。第一种算法适用于3D运动捕捉的数据,第二种算法适用于视频数据。两种算法都使用支持向量机(SVM)进行分类。两种方法都具有三个步骤:第一步是数据准备,即获取身体部位的轨迹;第二步是数据准备。第二步是基于步态对称性的步态表示。最后一步是基于SVM的分类。对于3D运动捕获的数据,基于离散傅立叶变换(DFT)的一组功能用于表示步态。我们通过一组实验证明了分类的准确性,这些实验表明用于3D运动捕获数据的方法非常有效。对于视频数据,开发了基于模型的人体部位跟踪算法以准备数据。然后,推导对2D数据序列(即视频帧序列)起作用的对称度量来表示步态。我们对2D投影数据和真实视频数据都进行了实验,以检验该算法。在二维投影数据上的实验结果表明,所提出的算法有望从视频中识别出病态步态。真实视频数据的实验结果不如2D投影数据的结果好。我们相信,如果改善跟踪算法的精度,则可以获得更好的结果。

著录项

  • 作者

    Niu, Feng.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号