【24h】

Dynamic Sub-Goal Generation with Uncertainty Analysis for Mobile Robots Navigation

机译:用于移动机器人导航的不确定性动态子目标生成

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach for path following in a partially known indoor environment. The approach combines the artificial potential fields technique, for navigation, with a local supervisor. The supervisor uses, a single geometric model and a known path. For each node belonging to the path, the supervisor generates multiple partial goals, including the next planned path point and the mission goal. Then, the supervisor selects, the most adequate, depending on, the possibility of being reached. Some criteria such as the distance travel optimizing, the uncertainty estimation and the localization zones, are considered. The supervisor is built to support the navigation system, which increases the missions success possibilities. The dynamic sub-goals generation and the selection criteria, are proposed. A kinematic model and the uncertainty representation for the robot, are developed. The artificial potential field concept, is introduced. Finally, the experimental results and the conclusions, are shown.
机译:本文提出了一种在部分已知的室内环境中进行路径跟踪的方法。该方法结合了用于导航的人工势场技术和本地主管。主管使用单个几何模型和已知路径。主管为属于该路径的每个节点生成多个局部目标,包括下一个计划的路径点和任务目标。然后,主管根据可能达到的可能性选择最合适的方法。考虑了一些标准,例如距离旅行优化,不确定性估计和定位区域。主管的构建是为了支持导航系统,这增加了任务成功的可能性。提出了动态子目标生成和选择标准。开发了机器人的运动学模型和不确定性表示。介绍了人工势场的概念。最后,给出了实验结果和结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号