【24h】

Learning to Fuse Disparate Sentences

机译:学习融合不同的句子

获取原文
获取原文并翻译 | 示例

摘要

We present a system for fusing sentences which are drawn from the same source document but have different content. Unlike previous work, our approach is supervised, training on real-world examples of sentences fused by professional journalists in the process of editing news articles. Like Filippova and Strube (2008), our system merges dependency graphs using Integer Linear Programming. However, instead of aligning the inputs as a preprocess, we integrate the tasks of finding an alignment and selecting a merged sentence into a joint optimization problem, and learn parameters for this optimization using a structured online algorithm. Evaluation by human judges shows that our technique produces fused sentences that are both informative and readable.
机译:我们提出了一种融合来自相同源文档但内容不同的句子的系统。与以前的工作不同,我们的方法是受监督的,对在编辑新闻文章过程中由专业记者融合的真实句子示例进行培训。像Filippova和Strube(2008)一样,我们的系统使用Integer Linear Programming合并依赖图。但是,我们没有将输入对齐作为预处理,而是将查找对齐和选择合并句子的任务集成到联合优化问题中,并使用结构化在线算法学习用于此优化的参数。人类法官的评估表明,我们的技术所产生的融合句子既翔实又可读。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号