首页> 外文会议>Uncertainty in artificial intelligence >Message-Passing Algorithms for Quadratic Programming Formulations of MAP Estimation
【24h】

Message-Passing Algorithms for Quadratic Programming Formulations of MAP Estimation

机译:MAP估计二次规划公式的消息传递算法

获取原文
获取原文并翻译 | 示例

摘要

Computing maximum a posteriori (MAP) es timation in graphical models is an important inference problem with many applications. We present message-passing algorithms for quadratic programming (QP) formulations of MAP estimation for pairwise Markov random fields. In particular, we use the concave convex procedure (CCCP) to obtain a lo cally optimal algorithm for the non-convex QP formulation. A similar technique is used to derive a globally convergent algorithm for the convex QP relaxation of MAP. We also show that a recently developed expectation maximization (EM) algorithm for the QP for mulation of MAP can be derived from the CCCP perspective. Experiments on syn thetic and real-world problems confirm that our new approach is competitive with max product and its variations. Compared with CPLEX, we achieve more than an order-of-magnitude speedup in solving optimally the convex QP relaxation.
机译:在许多模型中,计算图形模型中的最大后验(MAP)估计是一个重要的推理问题。我们提出用于成对马尔可夫随机场的MAP估计的二次编程(QP)公式的消息传递算法。特别是,我们使用凹凸过程(CCCP)来获得非凸QP公式的局部最优算法。使用类似的技术来导出用于MAP的凸QP松弛的全局收敛算法。我们还显示,可以从CCCP角度得出最近开发的用于QP的MAP期望值最大化(EM)算法。关于合成和现实问题的实验证实,我们的新方法在最大产品及其变化方面具有竞争力。与CPLEX相比,在最佳解决凸QP松弛方面,我们获得了超过数量级的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号