【24h】

Astroturfing Detection in Social Media: Using Binary n-Gram Analysis for Authorship Attribution

机译:社交媒体中的草皮检测:使用二元n-Gram分析进行作者身份归属

获取原文
获取原文并翻译 | 示例

摘要

Astroturfing is appearing in numerous contexts in social media, with individuals posting product reviews or political commentary under a number of different names, and is of concern because of the intended deception. An astroturfer works with the aim of making it seem that a large number of people hold the same opinion, promoting a consensus based on the astroturfer's intentions. It is generally done for commercial or political advantage, often by paid writers or ideologically-motivated writers. This paper brings the notion of authorship attribution to bear on the astroturfing problem, collecting quantities of data from public social media sites and analysing the putative individual authors to see if they appear to be the same person. The analysis comprises a binary n-gram method which was previously shown to be effective at accurately identifying authors on a training set from the same authors, while this paper shows how authors on different social media turn out to be the same author.
机译:社交媒体中出现了多种形式的“草皮草”,人们以许多不同的名字发布产品评论或政治评论,并且由于预期的欺骗而引起关注。航天员的工作目的是使许多人似乎持有相同的意见,从而促进基于航天员意图的共识。通常是为了商业或政治上的利益而这样做,通常是由有偿作家或有意识形态的作家来完成的。本文提出了作者身份归因的概念来解决麻烦问题,从公共社交媒体网站上收集大量数据,并分析假定的单个作者,看他们是否看起来是同一个人。该分析包括一个二进制n-gram方法,该方法先前被证明可以有效地从同一作者的训练集中准确地识别作者,而本文则显示了不同社交媒体上的作者是如何成为同一作者的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号