首页> 外文会议>Towards autonomous robotic systems >Mapping with Sparse Local Sensors and Strong Hierarchical Priors
【24h】

Mapping with Sparse Local Sensors and Strong Hierarchical Priors

机译:使用稀疏的本地传感器和强层次优先级进行映射

获取原文
获取原文并翻译 | 示例

摘要

The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of relatively weak priors. In contrast, the present study considers the mapping problem in environments where only sparse, local sensory information is available. To compensate for these weak likelihoods, we make use of strong hierarchical object priors. Hierarchical models were popular in classical blackboard systems but are here applied in a Bayesian setting and novelly deployed as a mapping algorithm. We give proof of concept results, intended to demonstrate the algorithm's applicability as a part of a tactile SLAM module for the whiskered SCRATCHbot mobile robot platform.
机译:机器人制图的范例情况假设大量的感官信息,从而允许使用相对较弱的先验条件。相反,本研究考虑了只有稀疏的局部感官信息可用的环境中的映射问题。为了弥补这些微不足道的可能性,我们使用了强层次对象先验。分层模型在经典的黑板系统中很流行,但是在这里被应用在贝叶斯环境中,并且被新颖地部署为映射算法。我们给出概念验证的结果,旨在证明该算法作为用于晶须SCRATCHbot移动机器人平台的触觉SLAM模块的一部分的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号