首页> 外文会议>The semantic web >Transfer Learning for Item Recommendations and Knowledge Graph Completion in Item Related Domains via a Co-Factorization Model
【24h】

Transfer Learning for Item Recommendations and Knowledge Graph Completion in Item Related Domains via a Co-Factorization Model

机译:通过协同因子化模型进行项目推荐领域的知识转移和知识图完成的转移学习

获取原文
获取原文并翻译 | 示例

摘要

With the popularity of Knowledge Graphs (KGs) in recent years, there have been many studies that leverage the abundant background knowledge available in KGs for the task of item recommendations. However, little attention has been paid to the incompleteness of KGs when leveraging knowledge from them. In addition, previous studies have mainly focused on exploiting knowledge from a KG for item recommendations, and it is unclear whether we can exploit the knowledge in the other way, i.e, whether user-item interaction histories can be used for improving the performance of completing the KG with regard to the domain of items. In this paper, we investigate the effect of knowledge transfer between two tasks: (1) item recommendations, and (2) KG completion, via a co-factorization model (CoFM) which can be seen as a transfer learning model. We evaluate CoFM by comparing it to three competitive baseline methods for each task. Results indicate that considering the incompleteness of a KG outperforms a state-of-the-art factorization method leveraging existing knowledge from the KG, and performs better than other baselines. In addition, the results show that exploiting user-item interaction histories also improves the performance of completing the KG with regard to the domain of items, which has not been investigated before.
机译:近年来,随着知识图谱(KGs)的普及,已有许多研究利用KGs中丰富的背景知识来完成项目推荐任务。但是,在利用幼稚园的知识时,很少关注幼稚园的不完整性。此外,以前的研究主要集中在利用KG的知识来推荐项目,尚不清楚我们是否可以以其他方式利用该知识,即用户-项目交互历史是否可以用于改善完成的性能关于项目领域的KG。在本文中,我们研究了两个任务之间的知识转移的影响:(1)项目建议,以及(2)通过可被视为转移学习模型的协同分解模型(CoFM)完成KG。我们通过将CoFM与每种任务的三种竞争基准方法进行比较来评估CoFM。结果表明,考虑到KG的不完全性,它优于利用KG的现有知识的最新因子分解方法,并且比其他基准具有更好的性能。此外,结果表明,利用用户与项目的交互历史记录还可以提高在项目领域方面完成KG的性能,这是以前从未研究过的。

著录项

  • 来源
    《The semantic web》|2018年|496-511|共16页
  • 会议地点 Crete(GR)
  • 作者单位

    Insight Centre for Data Analytics, Data Science Institute, National University of Ireland Galway, Galway, Ireland;

    Insight Centre for Data Analytics, Data Science Institute, National University of Ireland Galway, Galway, Ireland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号