首页> 外文期刊>Neurocomputing >Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling
【24h】

Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling

机译:通过项目图形嵌入和上下文友谊建模增强基于会话的社会建议

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are designed to help users find matching items from plenty of candidates in online platforms. In many online platforms, such as Yelp and Epinions, users' behaviors are constantly recorded over time, and the users also can build connections with others and share their interests. Previous recommendation methods have either modeled the dynamic interests or the dynamic social influences. A few studies have focused on the modeling of both factors, but they still have several limi-tations: 1) they fail to consider the complex items transitions among all session sequences, which can be used as a local factor to boost the performance of recommendation methods, and 2) they ignore that a user and their friends only share the same preferences in certain sessions, by keeping the friend vector unchanged for all target users at time t, and 3) they do not consider that a user's long-term preference may change with the evolution of interests.To overcome the above issues, in this paper, we propose an approach to incorporate item graph embedding and contextual friendship modeling into the recommendation task. Specifically, 1) we construct a directed item graph based on all historical session sequences and utilize a graph neural network to capture the rich local dependency between items, and 2) take a session-level attention mechanism to get each friend's representation according to the target user's current interests, and 3) apply max-pooling on the target user's historical session interests to learn the dynamics of his/her long-term interests. Extensive experiments on two real-world datasets show that our proposed model outperforms stateof-the-art methods consistently on various evaluation metrics. (c) 2020 Elsevier B.V. All rights reserved.
机译:推荐系统旨在帮助用户在线平台中查找来自大量候选人的匹配项。在许多在线平台(如yelp和excinions)中,用户的行为常常随着时间的推移记录,并且用户也可以与他人建立连接并分享他们的兴趣。以前的建议方法设计了动态兴趣或动态社会影响。一些研究专注于两个因素的建模,但它们仍然有几个利润:1)他们未考虑所有会话序列中的复杂物品过渡,这可以用作促进推荐性能的本地因素。方法和2)他们忽略了用户和他们的朋友在某些会话中只共享相同的偏好,通过将朋友矢​​量保持不变的时刻t,3)他们不认为用户的长期偏好可能会随着兴趣的演变而变化。在本文中克服上述问题,我们提出了一种将项目图形嵌入和上下文友谊建模的方法纳入推荐任务。具体而言,1)我们基于所有历史会话序列构建定向的项目图表,并利用图形神经网络来捕获物品之间丰富的本地依赖关系,而2)采取会话级注意机制以根据目标获取每个朋友的表示3)用户的当前兴趣和3)在目标用户的历史会议上应用最大汇集,以了解他/她的长期利益的动态。两个现实世界数据集的广泛实验表明,我们所提出的模型在各种评估指标上始终如一地始终始终如一地展示了州内的方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第2期|190-202|共13页
  • 作者单位

    China Jiliang Univ Coll Modern Sci & Technol Hangzhou Peoples R China;

    Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China;

    Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China;

    Univ Technol Sydney Adv Analyt Inst Sydney NSW Australia;

    Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Session-based recommendation; Social recommendation; Graph convolutional networks;

    机译:基于会议的建议;社会推荐;图卷积网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号