首页> 外文期刊>Expert systems with applications >entity2rec: Property-specific knowledge graph embeddings for item recommendation
【24h】

entity2rec: Property-specific knowledge graph embeddings for item recommendation

机译:Entity2REC:物业特定知识图形嵌入物品推荐

获取原文
获取原文并翻译 | 示例

摘要

Knowledge graphs have shown to be highly beneficial to recommender systems, providing an ideal data structure to generate hybrid recommendations using both content-based and collaborative filtering. Most knowledge-aware recommender systems are based on manually engineered features, typically relying on path counting and/or on random walks. Recently, knowledge graph embeddings have proven to be extremely effective at learning features for prediction tasks, reducing the complexity and time required to manually design effective features. In this work, we present entity2rec, which learns user-item relatedness for item recommendation through property-specific knowledge graph embeddings. A key element of entity2rec is the construction of property-specific subgraphs. Through an extensive evaluation on three datasets, we show that: (1) hybrid property-specific subgraphs consistently enhance the quality of recommendations with respect to collaborative and content-based subgraphs; (2) entity2rec generates accurate and non-obvious recommendations, compared to a set of state-of-the-art recommender systems, achieving high accuracy, serendipity and novelty. More in detail, entity2rec is particularly effective when the dataset is sparse and has a low popularity bias; (3) entity2rec is easily interpretable and can thus be configured for a particular recommendation problem. (C) 2020 Published by Elsevier Ltd.
机译:知识图表已经对推荐系统具有非常有益的,提供了使用基于内容和协作滤波的理想数据结构来生成混合建议。大多数知识感知的推荐系统基于手动设计的功能,通常依赖于路径计数和/或随机散步。最近,知识图形嵌入在预测任务的学习功能中已经证明是非常有效的,从而降低手动设计有效功能所需的复杂性和时间。在这项工作中,我们呈现Entity2REC,它通过特定于财产特定知识图形嵌入来了解项目建议的用户项目相关性。 Entity2REC的一个关键要素是构建特定性的子图。通过对三个数据集进行广泛的评估,我们表明:(1)特定于混合性质的子图,始终如一地提高了基于协同和基于内容的子图的建议的质量; (2)Entity2REC与一组最先进的推荐系统相比,产生准确和非明显的建议,实现高精度,陈述和新颖性。更详细地,当数据集稀疏时,Entity2REC特别有效,并且具有低普及偏差; (3)Entity2REC容易解释,因此可以为特定推荐问题配置。 (c)2020由elestvier有限公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号