首页> 外文期刊>Neurocomputing >Hybrid collaborative recommendation of co-embedded item attributes and graph features
【24h】

Hybrid collaborative recommendation of co-embedded item attributes and graph features

机译:混合协作建议共嵌入项目属性和图形功能

获取原文
获取原文并翻译 | 示例

摘要

In recent decades, personalized recommendation systems have attracted much attention from multiple disciplines for recommending interested products and services to users. Recommendation accentuates both the importance of feature learning tasks and the challenges posed by the sparsity of rating matrix. A common method for addressing the sparsity problem is to extend the feature space by the attributes of users and/or items. However, there are two main drawbacks in most existing recommendation methods. The first is the high computational cost of most existing recommendation models when using additional information from users and/or items to expand the feature space. The second problem is that it is difficult to obtain user additional information due to the high cost of acquiring tag knowledge and the increase in user privacy awareness. In this paper, we propose a novel and simple model to address the abovementioned issues, which employs a semi-autoencoder to co-embed the attributes and the graph features of the items for rating prediction (short for Item-Agrec). More specifially, a semi-autoencoder is introduced to learn the hidden nonlinear features of items for achieving a low computational cost, and thus the proposed Item-Agrec model can flexibly use side information from different sources. Meanwhile, in the case that it is not easy to obtain the user & rsquo;s additional information, we take the item & rsquo;s graph features and attributes into consideration for improving the accuracy of recommendation. Experiments on several real world datasets demonstrate the effectiveness of the proposed Item-Agrec compared with state-of-theart attribute-aware and content-aware methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:近几十年来,个性化推荐系统吸引了对用户向用户推荐有兴趣的产品和服务的多个学科的关注。建议强调了特色学习任务的重要性以及评级矩阵的稀疏性构成的挑战。用于解决稀疏问题的常用方法是通过用户和/或项目的属性扩展特征空间。但是,在大多数现有推荐方法中存在两个主要缺点。第一种是当使用来自用户和/或项目的附加信息来扩展要素空间时,最先进的推荐模型的高计算成本。第二个问题是,由于获取标签知识的高成本和用户隐私意识的增加,难以获得用户的附加信息。在本文中,我们提出了一种新颖且简单的模型来解决上述问题,该问题采用半自动码器将属性和图表特征与额定值预测的项目(简而言之)进行共嵌入属性和图表特征(项目 - Agrec的简短)。更介绍,引入了一个半自动域,以了解用于实现低计算成本的项目的隐藏非线性特征,因此所提出的项目 - Agrec模型可以灵活地使用来自不同来源的侧面信息。同时,在不容易获取用户和rsquo的情况下,我们考虑了提高推荐准确性的项目和rsquo; s图来特征和属性。关于几个真实世界数据集的实验证明了拟议的项目 - Agrec的有效性与Thear-of theal-of theal-of-of-the-of the-of the-of-of the-of-the-of-of-the-of the-of the-of the-of the-of thealte-afware-afware方法。(c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第28期|307-316|共10页
  • 作者单位

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Inst Big Knowledge Sci Hefei Peoples R China;

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Inst Big Knowledge Sci Hefei Peoples R China|Yangzhou Univ Sch Informat Engn Yangzhou Jiangsu Peoples R China;

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Inst Big Knowledge Sci Hefei Peoples R China;

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Inst Big Knowledge Sci Hefei Peoples R China|Mininglamp Acad Sci Mininglamp Technol Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender systems; Autoencoder; Graph features; Collaborative filtering;

    机译:推荐系统;autoencoder;图表特征;协作过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号