首页> 外文会议>International Conference on Big Data and Computational Intelligence >Collaborative filtering recommendation algorithm considering users’ preferences for item attributes
【24h】

Collaborative filtering recommendation algorithm considering users’ preferences for item attributes

机译:考虑用户对商品属性的偏好的协同过滤推荐算法

获取原文

摘要

In the neighborhood-based collaborative filtering recommendation algorithm, the accuracy of the similarity calculation determines the quality of the recommendation algorithm directly. The traditional similarity measure only considers influence of common rated items among users, and ignores the attribute characteristics of users' rated items. Low-precision similarity metrics reduce performance of recommended systems, when the dataset is extremely sparse. In order to solve above problems, this paper proposes a similarity measure model considering users' preferences for item attributes. The model fully considers the user's preferences for item attributes and co-rated items, and the number of co-rated items. The model establishes more connections between users and items, so as to mine user interests effectively and make it more in line with the actual application. The experimental results show that the model proposed by this paper is superior to other comparison methods in accuracy and diversity, which effectively improves the performance of the recommended algorithm.
机译:在基于邻域的协同过滤推荐算法中,相似度计算的准确性直接决定了推荐算法的质量。传统的相似度度量仅考虑用户共同评价项目的影响,而忽略了用户评价项目的属性特征。当数据集非常稀疏时,低精度相似性度量会降低推荐系统的性能。为了解决上述问题,本文提出了一种考虑用户对商品属性的偏好的相似度度量模型。该模型充分考虑了用户对商品属性和共同定额商品的偏好以及共同定额商品的数量。该模型在用户和物品之间建立了更多的联系,从而有效地挖掘了用户的兴趣,并使之更符合实际应用。实验结果表明,本文提出的模型在准确性和多样性上优于其他比较方法,有效地提高了推荐算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号