首页> 外文会议>The 2nd International Conference on Bioinformatics and Biomedical Engineering(iCBBE 2008)(第二届生物信息与生物医学工程国际会议)论文集 >Prediction of seven protein structural classes by fusing multi-feature information including protein evolutionary conservation information
【24h】

Prediction of seven protein structural classes by fusing multi-feature information including protein evolutionary conservation information

机译:通过融合包括蛋白质进化保守信息在内的多种特征信息来预测七个蛋白质结构类别

获取原文

摘要

Determination of protein structural class is a quite meaningful topic in protein science, because a priori knowledge of a protein structural class can provide useful information about its overall structure. The results of most previous studies used high homologous dataset with four structural classes should not be perceived as reliable, because the sequence homology has very significant impact on the prediction accuracy. Using a rigorous dataset with only less than 20% sequence identity to each other, this paper developed a novel pseudo amino acid composition method (PseAA) approach by incorporating protein evolutionary conservation information, amino acid physicochemical properties and statistical information to predict seven structural classes. Comparing with another PseAA method, the overall accuracy of our multi-feature information fusion method is 4.6% higher than that of the method of autocorrelation function of amino acid RICJ880103 in jackknife test. The results indicate that multi-feature information fusion including evolutionary information is effective and robust for the prediction of protein structural class with low sequence identity dataset, and can be effectively complemented with functional domain composition method.
机译:蛋白质结构类别的确定在蛋白质科学中是一个非常有意义的话题,因为对蛋白质结构类别的先验知识可以提供有关其整体结构的有用信息。先前的大多数研究结果都使用具有四个结构类别的高同源性数据集,因此不应被认为是可靠的,因为序列同源性对预测准确性具有非常重要的影响。本文使用严格的数据集,彼此之间只有不到20%的序列同一性,通过结合蛋白质进化保守信息,氨基酸理化特性和统计信息来预测七个结构类别,从而开发了一种新颖的伪氨基酸组成方法(PseAA)。与另一种PseAA方法相比,我们的多特征信息融合方法的整体准确性比在绞刀测试中氨基酸RICJ880103的自相关函数的方法高4.6%。结果表明,包括进化信息在内的多特征信息融合对于低序列同一性数据集的蛋白质结构分类的预测是有效和鲁棒的,并且可以通过功能域组成法得到有效补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号