首页> 外文会议>Silicon-Germanium Technology and Device Meeting (ISTDM), 2012 International >Single-Crystalline Elastically Relaxed SiGe Nanomembranes: Substrates for Epitaxial Growth of Defect-Free Strained-Si/SiGe Heterostructures
【24h】

Single-Crystalline Elastically Relaxed SiGe Nanomembranes: Substrates for Epitaxial Growth of Defect-Free Strained-Si/SiGe Heterostructures

机译:单晶弹性松弛SiGe纳米膜:外延生长无缺陷应变Si / SiGe异质结构的基底。

获取原文
获取原文并翻译 | 示例

摘要

The strain engineering of silicon-germanium alloys plays a pivotal role in advanced Group IV opto- and nanoelectronics. Strain induced in Si, Ge, and Si1-yGey via epitaxial growth on relaxed Si1-xGex, has enabled enhanced electronic transport and created charge confinement in heterostructures. A current application of strained-Si/relaxed-SiGe heterostructures, Si-Ge based quantum information processing, involves the fabrication of 2-dimensional electron gas layers (2DEGs) that can be patterned and gated to confine individual electrons into quantum qubits with long spin relaxation times [1]. The performance of such qubit devices is quite sensitive to changes in the electrostatic potential and thus high-quality materials are essential. The crystalline quality of the initial substrate, in the conventional case plastically relaxed SiGe, largely dictates the structural quality of the heterostructures grown on top. Conventional methods for creating relaxed SiGe substrates involve step- graded heteroepitaxial growth on Si substrates and relaxation of the alloy via dislocations. The density of defects that reach the top relaxed SiGe layer can be limited though various techniques [2], but at minimum strain inhomogeneities and mosaic structure created by the dislocations remain. The nonuniformity in the starting substrate influences the epitaxy of heterostructures grown on top, including the strained- Si quantum well. We demonstrate the fabrication of SiGe nanomembranes (NM): fully elastically relaxed, smooth, single- crystalline sheets of SiGe alloy. A thin SiGe layer (less than the kinetic critical thickness for dislocation formation) is grown on a silicon-on-insulator (SOI) substrate with molecular beam epitaxy, fol-lowed by a Si capping layer with thickness similar to that of the Si template layer of the SOI (Figure 1A). The SiO2 layer of the SOI is selectively etched away, leaving the Si/SiGe/Si trilayer heterostructure free to strain share (Figure 1B). The Si layers of- the trilayer are then selectively etched away, leaving a fully elastically relaxed SiGe NM (Figure 1C). These SiGe NMs are then transferred to new handling sub-strates and bonded (Figure 1D). The strain states of the SiGe NMs are measured throughout the fabrication process with Raman spectroscopy (Figure 2A). Initially, the SiGe is fully strained to the Si lattice constant, and relaxes to the bulk SiGe lattice constant only after release from the original growth substrate and removal of the surrounding Si layers. The elastically relaxed SiGe NMs are viable substrates for growth of new defect-free materials. To create an improved strained-Si 2DEG, we grow lattice matched SiGe on a transferred SiGe NM, followed by ~10 nm of strained Si and capped with another layer of SiGe. Raman spectroscopy on the heter-ostructure confirms that the Si is strained to the SiGe lattice constant and the additional SiGe is lattice matched to the original SiGe NM (Figure 2B). We compare the strain uniformity and mosaic structure of strained-Si/SiGe heterostructures grown on SiGe NM substrates with those grown on SiGe substrates relaxed via dislocations (the conventional way). Figure 3 shows x-ray diffraction reciprocal- space maps for two such structures, illustrating the vast improvement in the average mosaic structure on the NM grown 2DEG. We will also present comparisons of local strain variations (~1 μm range) based on micro-Raman spectroscopy, and local mosaic tilt (~200 nm range or less) within heterostructures grown on the two types of substrates based on synchrotron x- ray nanodiffraction measurements
机译:硅锗合金的应变工程在先进的IV类光电子和纳米电子学中起着关键作用。通过在松弛的Si1-xGex上外延生长在Si,Ge和Si1-yGey中引起的应变,能够增强电子传输并在异质结构中产生电荷限制。应变Si /松弛SiGe异质结构的当前应用(基于Si-Ge的量子信息处理)涉及二维电子气层(2DEG)的制造,可以对其进行构图和选通以将单个电子限制为具有长自旋的量子量子位松弛时间[1]。这种量子位器件的性能对静电势的变化非常敏感,因此高质量的材料至关重要。在常规情况下,塑性松弛的SiGe,初始衬底的晶体质量在很大程度上决定了在顶部生长的异质结构的结构质量。用于产生松弛的SiGe衬底的常规方法包括在Si衬底上逐步生长的异质外延生长以及通过位错使合金松弛。可以通过各种技术来限制到达顶部弛豫的SiGe层的缺陷的密度[2],但是在最小应变不均匀性和由位错产生的镶嵌结构的情况下,仍然可以。起始衬底的不均匀性影响顶部生长的异质结构的外延,包括应变Si量子阱。我们演示了SiGe纳米膜(NM)的制造:SiGe合金的完全弹性松弛,光滑,单晶片。在具有分子束外延的绝缘体上硅(SOI)衬底上生长一层薄薄的SiGe层(小于位错形成的动力学临界厚度),然后是厚度与Si模板相似的Si覆盖层SOI层(图1A)。 SOI的SiO2层被有选择地蚀刻掉,剩下的Si / SiGe / Si三层异质结构没有应变共享(图1B)。然后,选择性地蚀刻掉三层的Si层,留下一个完全弹性松弛的SiGe NM(图1C)。然后将这些SiGe NM转移到新的处理基板上并进行粘合(图1D)。 SiGe NM的应变状态在整个制造过程中使用拉曼光谱法进行测量(图2A)。最初,SiGe完全应变至Si晶格常数,并且仅在从原始生长衬底释放并去除周围的Si层后才松弛至体SiGe晶格常数。弹性松弛的SiGe NM是用于生长新型无缺陷材料的可行基板。为了创建改进的应变Si 2DEG,我们在转移的SiGe NM上生长晶格匹配的SiGe,然后注入约10 nm的应变Si,并盖上另一层SiGe。异质结构上的拉曼光谱证实,Si应变至SiGe晶格常数,另外的SiGe与原始SiGe NM晶格匹配(图2B)。我们比较了在SiGe NM衬底上生长的应变Si / SiGe异质结构与在SiGe衬底上生长的通过位错松弛的应变均匀性和镶嵌结构(传统方式)。图3显示了两个这样的结构的X射线衍射倒数空间图,说明了NM生长的2DEG上平均镶嵌结构的巨大改进。我们还将提供基于微拉曼光谱的局部应变变化(〜1μm范围)和基于同步加速器X射线纳米衍射在两种类型衬底上生长的异质结构内的局部镶嵌倾斜(〜200 nm范围或更小)的比较。测量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号