首页> 外文会议>International Silicon-Germanium Technology and Device Meeting >Single-Crystalline Elastically Relaxed SiGe Nanomembranes: Substrates for Epitaxial Growth of Defect-Free Strained-Si/SiGe Heterostructures
【24h】

Single-Crystalline Elastically Relaxed SiGe Nanomembranes: Substrates for Epitaxial Growth of Defect-Free Strained-Si/SiGe Heterostructures

机译:单晶弹性松弛的SiGe nanomembranes:用于无缺陷的应变 - Si / SiGe异质结构外延生长的基材

获取原文

摘要

The strain engineering of silicon-germanium alloys plays a pivotal role in advanced Group IV opto- and nanoelectronics. Strain induced in Si, Ge, and Si1-yGey via epitaxial growth on relaxed Si1-xGex, has enabled enhanced electronic transport and created charge confinement in heterostructures. A current application of strained-Si/relaxed-SiGe heterostructures, Si-Ge based quantum information processing, involves the fabrication of 2-dimensional electron gas layers (2DEGs) that can be patterned and gated to confine individual electrons into quantum qubits with long spin relaxation times [1]. The performance of such qubit devices is quite sensitive to changes in the electrostatic potential and thus high-quality materials are essential. The crystalline quality of the initial substrate, in the conventional case plastically relaxed SiGe, largely dictates the structural quality of the heterostructures grown on top. Conventional methods for creating relaxed SiGe substrates involve step- graded heteroepitaxial growth on Si substrates and relaxation of the alloy via dislocations. The density of defects that reach the top relaxed SiGe layer can be limited though various techniques [2], but at minimum strain inhomogeneities and mosaic structure created by the dislocations remain. The nonuniformity in the starting substrate influences the epitaxy of heterostructures grown on top, including the strained- Si quantum well. We demonstrate the fabrication of SiGe nanomembranes (NM): fully elastically relaxed, smooth, single- crystalline sheets of SiGe alloy. A thin SiGe layer (less than the kinetic critical thickness for dislocation formation) is grown on a silicon-on-insulator (SOI) substrate with molecular beam epitaxy, fol-lowed by a Si capping layer with thickness similar to that of the Si template layer of the SOI (Figure 1A). The SiO2 layer of the SOI is selectively etched away, leaving the Si/SiGe/Si trilayer heterostructure free to strain share (Figure 1B). The Si layers of- the trilayer are then selectively etched away, leaving a fully elastically relaxed SiGe NM (Figure 1C). These SiGe NMs are then transferred to new handling sub-strates and bonded (Figure 1D). The strain states of the SiGe NMs are measured throughout the fabrication process with Raman spectroscopy (Figure 2A). Initially, the SiGe is fully strained to the Si lattice constant, and relaxes to the bulk SiGe lattice constant only after release from the original growth substrate and removal of the surrounding Si layers. The elastically relaxed SiGe NMs are viable substrates for growth of new defect-free materials. To create an improved strained-Si 2DEG, we grow lattice matched SiGe on a transferred SiGe NM, followed by ~10 nm of strained Si and capped with another layer of SiGe. Raman spectroscopy on the heter-ostructure confirms that the Si is strained to the SiGe lattice constant and the additional SiGe is lattice matched to the original SiGe NM (Figure 2B). We compare the strain uniformity and mosaic structure of strained-Si/SiGe heterostructures grown on SiGe NM substrates with those grown on SiGe substrates relaxed via dislocations (the conventional way). Figure 3 shows x-ray diffraction reciprocal- space maps for two such structures, illustrating the vast improvement in the average mosaic structure on the NM grown 2DEG. We will also present comparisons of local strain variations (~1 μm range) based on micro-Raman spectroscopy, and local mosaic tilt (~200 nm range or less) within heterostructures grown on the two types of substrates based on synchrotron x- ray nanodiffraction measurements
机译:硅 - 锗合金的应变工程在先进的IV组光学和纳米电子中起着枢轴作用。在Si,Ge和Si1-ygey诱导的菌株通过外延生长在弛豫的Si1-XGEx上,使得能够增强的电子传输并在异质结构中产生电荷限制。电流施加应变-Si /弛豫 - SiGe异质结构,Si-Ge基量子信息处理,涉及制造2维电子气体层(2deg),其可以用长旋转将各个电子限制在量子Qubits中。放松时间[1]。这种量子位装置的性能对静电电位的变化非常敏感,因此高质量的材料是必不可少的。初始基板的晶体质量,在传统的情况下塑性松弛的SiGe,很大程度上决定了在顶部生长的异质结构的结构质量。用于产生弛豫SiGe基材的常规方法涉及Si基板上的阶梯异质生长,并通过位错释放合金。达到顶部松弛的SiGe层的缺陷的密度可以限制各种技术[2],但是在最小应变的不均匀性和由脱位产生的马赛克结构处仍然存在。起始底物中的不均匀性影响顶部生长的异质结构的外延,包括应变量子阱。我们证明了SiGe Nanomembranes(NM)的制备:完全弹性弛豫,光滑,单晶的SiGe合金片。薄的SiGe层(小于位错形成的动力学厚度)在具有分子束外延的绝缘体上(SOI)衬底上生长,由Si覆盖层的厚度与Si模板类似的Si封端层来降低SOI层(图1A)。选择性地蚀刻SOI的SiO2层,将Si / SiGe / Si三聚体异质结构远离无菌株份额(图1B)。然后选择性地蚀刻三层层的Si层,留下完全弹性弛豫的SiGe nm(图1c)。然后将这些SiGeNMS转移到新的处理子条纹和粘合(图1D)。通过拉曼光谱法测量SiGe NMS的应变状态(图2a)。最初,SiGe完全应紧张到Si晶格常数,并且仅在从原始生长基板释放后恒定地放松体积SiGe晶格恒定,并释放周围的Si层。弹性弛豫的SiGe NMS是用于生长新的无缺陷材料的可行性底物。为了产生改进的紧张Si 2deg,我们将晶格与转移的SiGE nm上的匹配的SiGe匹配,其次是〜10nm的紧张Si并用另一层SiGe封盖。外结核上的拉曼光谱证实Si被应变为SiGe晶格常数,并且附加的SiGe是与原始SiGeNM匹配的晶格(图2b)。我们比较在SiGeNM衬底上生长的应变-Si / SiGe异质结构的应变均匀性和马赛克结构与在SiGe基材上生长的那些通过位错(常规方式)弛豫。图3示出了两个这样的结构的X射线衍射往复式 - 空间图,示出了NM生长2deg上的平均马赛克结构的广泛改善。我们还将呈现基于微拉曼光谱的局部应变变化(〜1μm范围)的比较,以及在基于同步X射线纳米二聚件的两种基板上生长的异质结构内的局部马赛克倾斜(〜200nm范围或更小)测量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号