首页> 外文会议>Signal and Data Processing of Small Targets 2006 >Wind profiling by a coherent Doppler lidar system VALIDAR with a subspace decomposition approach
【24h】

Wind profiling by a coherent Doppler lidar system VALIDAR with a subspace decomposition approach

机译:相干多普勒激光雷达系统VALIDAR的风廓线分析和子空间分解方法

获取原文
获取原文并翻译 | 示例

摘要

The current nonlinear algorithm of the coherent Doppler lidar system VALIDAR at NASA Langley Research Center estimates wind parameters such as Doppler shift, power, wind velocity and direction by locating the maximum power and its frequency from the periodogram of the stochastic lidar returns. Due to the nonlinear nature of the algorithm, mathematically tractable parametric approaches to improve the quality of wind parameter estimates may pose a very little influence on the estimates especially in low signal-to-noise-ratio (SNR) regime. This paper discusses an alternate approach to accurately estimate the nonlinear wind parameters while preventing ambiguity in decision-making process via the subspace decomposition of wind data. By exploring the orthogonality between noise and signal subspaces expanded by the eigenvectors corresponding to the eigenvalues representing each subspace, a single maximum power frequency is estimated while suppressing erroneous peaks that are always present with conventional Fourier-transform-based frequency spectra. The subspace decomposition approach is integrated into the data processing program of VALIDAR in order to study the impact of such an approach on wind profiling with VALIDAR.
机译:NASA兰利研究中心目前使用的相干多普勒激光雷达系统VALIDAR的非线性算法通过从随机激光雷达返回的周期图中找到最大功率及其频率来估计风速参数,例如多普勒频移,功率,风速和风向。由于算法的非线性性质,特别是在低信噪比(SNR)情况下,提高风参数估计质量的数学上易处理的参数方法可能对估计影响很小。本文讨论了另一种方法,该方法可以在估计风的非线性参数的同时,通过风数据的子空间分解来防止决策过程中的歧义。通过探索噪声和信号子空间之间的正交性,该噪声和信号子空间由对应于代表每个子空间的特征值的特征向量扩展的特征向量,可以估算单个最大功率频率,同时抑制传统的基于傅立叶变换的频谱中始终存在的错误峰值。子空间分解方法已集成到VALIDAR的数据处理程序中,以研究这种方法对使用VALIDAR进行风剖析的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号