首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >Iterative joint probabilistic data association for avoiding track coalescence and track swap in multi-target tracking
【24h】

Iterative joint probabilistic data association for avoiding track coalescence and track swap in multi-target tracking

机译:迭代联合概率数据关联在多目标跟踪中避免跟踪合并和跟踪交换

获取原文
获取原文并翻译 | 示例

摘要

The iterative technique developed in this paper achieves simultaneous reduction of track coalescence and track swap by computing a better prior for the joint association event used in estimating target states. This prior is computed using expectation maximization (EM). Using the computed prior the iterative method avoids track coalescence and track swap while preserving the robustness of JPDA towards clutter and missed detection. Compared to other coalescence avoidance schemes, the proposed method avoids coalescence and swap without pruning the joint association events. Monte Carlo simulations verify the advantage of the proposed method over other approaches in a cluttered multi-target environment.
机译:本文中开发的迭代技术通过计算用于估计目标状态的联合关联事件的更好先验,实现了轨道合并和轨道交换的同时减少。使用期望最大化(EM)计算该先验。使用预先计算的迭代方法可以避免轨迹合并和轨迹交换,同时保留了JPDA对混乱和漏检的鲁棒性。与其他避免聚结方案相比,该方法避免了聚结和交换而不修剪联合事件。蒙特卡洛模拟在杂乱的多目标环境中证明了该方法相对于其他方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号