首页> 外文会议>Semiconductor wafer bonding 11: science, technology, and applications - in honor of ulrich gosele >Cu-Sn Wafer Level Bonding for Vacuum Encapsulation of Microbolometers Focal Plane Arrays
【24h】

Cu-Sn Wafer Level Bonding for Vacuum Encapsulation of Microbolometers Focal Plane Arrays

机译:Cu-Sn晶圆级键合用于微测辐射热计焦平面阵列的真空封装

获取原文
获取原文并翻译 | 示例

摘要

Wafer level packaging represents the key to achieving cost efficiency and high reliability of packaging of a large variety of MEMS in high volume production, while at the same time allowing the reduction of the final size of the device. Accelerometers, gyroscopes, RF switches, RF resonators, microbolometers, micro-mirrors, all require a package to protect the fragile and sensitive parts and are dependent on a well controlled atmosphere in the package in order to function at the required performance. For many of these devices hermetic encapsulation in vacuum is required, which imposes tough challenges on cost reduction and ensuring long term reliability.rnSeveral wafer-scale packaging technologies have proven their ability to secure vacuum and high reliability in demanding applications, such as in the automotive industry for example. Glass-based bonding methods, i.e. anodic bonding and glass frit, have traditionally been used for most of the wafer level packaging of high volume MEMS, such as pressure sensors, accelerometer, gyroscopes. More recently, metal seals have gained more and more attention, due to the lower permeability rate of metals [1] and therefore to their potential for improved hermeticity achievable with smaller seal rings.rnIn this paper we present a process for wafer-level hermetic vacuum encapsulation for fragile MEMS devices based on Cu-Sn solid-liquid interdiffusion bonding (SLID) [2, 3], also known as isothermal solidification (IS) or transient liquid phase bonding (TLP) [4, 5]. The process is an alternative for encapsulation of Sensonor's long wave infraredThe influence of annealing and thermal cycling on the bonding strength, on the microstructure of the interface layer and on the deflection of the two sides of the bonded cavities has been investigated. No significant changes have been found for the dies that withstood the thermal treatment. However, some of the chips delaminated after annealing at 375°C and 400°C, most probably due to interface voids. More investigations are required to confirm the cause and to fUrther optimize the bonding process.
机译:晶圆级封装代表了在大规模生产中实现成本效益和各种MEMS封装的高可靠性的关键,同时还可以减小设备的最终尺寸。加速度计,陀螺仪,RF开关,RF谐振器,微辐射热计,微镜,都需要使用一个包装来保护易碎和敏感的部件,并且依赖于包装中受良好控制的气氛才能发挥所需的性能。对于许多这样的器件,要求在真空中进行气密封装,这对降低成本和确保长期可靠性提出了严峻的挑战。rn数种晶圆级封装技术已证明能够在要求苛刻的应用(例如汽车)中确保真空和高可靠性例如工业。传统上,基于玻璃的键合方法(即阳极键合和玻璃粉)已用于大体积MEMS的大多数晶圆级封装,例如压力传感器,加速计,陀螺仪。最近,由于金属的渗透率较低[1],因此金属密封件越来越受到关注[1],因此它们具有用较小的密封环实现改善气密性的潜力。在本文中,我们提出了一种用于晶圆级气密真空的工艺基于Cu-Sn固液互扩散键合(SLID)[2、3]的易碎MEMS器件封装,也称为等温固化(IS)或瞬态液相键合(TLP)[4、5]。该方法是Sensonor长波红外封装的替代方法。研究了退火和热循环对键合强度,界面层微观结构以及键合腔体两侧挠度的影响。对于经受热处理的模具,没有发现重大变化。但是,某些芯片在375°C和400°C退火后会分层,这很可能是由于界面空隙所致。需要进行更多调查以确认原因并进一步优化粘合过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号