首页> 外文会议>International Semiconductor Device Research Symposium;ISDRS '09 >NO2 sensitivity of wide area SiC and epitaxial graphene on SiC substrates
【24h】

NO2 sensitivity of wide area SiC and epitaxial graphene on SiC substrates

机译:SiC衬底上大面积SiC和外延石墨烯对NO 2 的敏感性

获取原文

摘要

SiC has cemented its place as a material of choice for high power devices that can operate at high temperature and harsh environment due to its high critical breakdown field (> 2 MV/cm), high thermal conductivity (120 W/m-K), and high electron saturation velocity. Therefore, SiC is one of the commonly materials used in high temperature gas sensors in catalytic converter today. Most SiC gas sensors are in the form of schottky diodes or capacitive MIS devices [1] where target molecules would dissociate on the catalyst metal surface and create a change in potential barrier across the interface. Despite its widespread application in high temperature gas sensors, SiC is still used as substrate material as gaseous adsorption on thin film semiconductor surfaces does not change the conductance of the overall film significantly. Consequently, research reports on molecular adsorption on SiC thin films and related electronic property changes are scarce. Nevertheless, theoretical calculations involving SiC nanotubes show that they can bind gaseous molecules [2] and also reports on experimental evidences of H2 detection utilizing resistance change of 3C-SiC thin films [3] are present. In this work, microcantilever based electrostatic force microscopy is applied to find out the surface work function (SWF) changes of wide area SiC thin films with the adsorption of NO2 molecules. Any sensitivity variation between Si and C faces of SiC and also between undoped and doped SiC is also discussed.
机译:SiC凭借其高临界击穿场(> 2 MV / cm),高导热率(120 W / mK)和高强度,已成为可在高温和恶劣环境下工作的高功率器件的首选材料电子饱和速度。因此,SiC是当今催化转化器中高温气体传感器中常用的材料之一。大多数SiC气体传感器采用肖特基二极管或电容式MIS器件的形式[1],目标分子将在催化剂金属表面上解离并在界面上形成势垒变化。尽管SiC在高温气体传感器中得到了广泛应用,但由于薄膜半导体表面上的气体吸附不会显着改变整个薄膜的电导率,因此SiC仍被用作衬底材料。因此,关于SiC薄膜上分子吸附和相关电子性能变化的研究报道很少。然而,涉及SiC纳米管的理论计算表明它们可以结合气态分子[2],并且还报道了利用3C-SiC薄膜电阻变化检测H 2 的实验证据[3]。在这项工作中,基于微悬臂梁的静电力显微镜被用于发现大面积SiC薄膜吸附NO 2 分子的表面功函数(SWF)变化。还讨论了SiC的Si和C面之间以及未掺杂和掺杂的SiC之间的任何灵敏度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号