首页> 外文会议>Second workshop on neural machine translation 2018 >Inducing Grammars with and for Neural Machine Translation
【24h】

Inducing Grammars with and for Neural Machine Translation

机译:并用神经机器翻译诱导语法

获取原文
获取原文并翻译 | 示例

摘要

Machine translation systems require semantic knowledge and grammatical understanding. Neural machine translation (NMT) systems often assume this information is captured by an attention mechanism and a decoder that ensures fluency. Recent work has shown that incorporating explicit syntax alleviates the burden of modeling both types of knowledge. However, requiring parses is expensive and does not explore the question of what syntax a model needs during translation. To address both of these issues we introduce a model that simultaneously translates while inducing dependency trees. In this way, we leverage the benefits of structure while investigating what syntax NMT must induce to maximize performance. We show that our dependency trees are 1. language pair dependent and 2. improve translation quality.
机译:机器翻译系统需要语义知识和语法理解。神经机器翻译(NMT)系统通常假定此信息是由注意力机制和确保流畅的解码器捕获的。最近的工作表明,合并显式语法可以减轻对两种类型的知识进行建模的负担。但是,要求解析是昂贵的,并且没有探讨模型在翻译过程中需要哪种语法的问题。为了解决这两个问题,我们引入了一个模型,该模型可以在翻译依赖树的同时进行翻译。通过这种方式,我们在研究NMT必须诱导哪种语法以最大化性能的同时,利用结构的好处。我们证明了我们的依赖树是1.语言对依赖的,并且2.提高翻译质量的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号