首页> 外文会议>Scientific computing, computer arithmetic and validated numerics >Numerical Verification for Elliptic Boundary Value Problem with Nonconforming P_1 Finite Elements
【24h】

Numerical Verification for Elliptic Boundary Value Problem with Nonconforming P_1 Finite Elements

机译:不合格P_1有限元椭圆边值问题的数值验证

获取原文
获取原文并翻译 | 示例

摘要

We propose a numerical method with the nonconforming P_1 FEM to verify the existence of solutions to an elliptic boundary value problem. Formulating the boundary value problem as a fixed-point problem on the sum space of the nonconforming P_1 finite element space with the Sobolev space of 1st order with zero Dirichlet condition, we construct the numerical verification method based on the Schauder fixed-point theorem. We show a constructive inequality for a boundary integral that appears due to the discontinuity of a nonconforming P_1 finite element function. Finally, we present a numerical example to show our proposed method works well.
机译:我们提出了一种不合格P_1有限元的数值方法,以验证椭圆边界值问题解的存在性。用零狄里克雷特条件将一阶Sobolev空间上不相容P_1有限元空间的和空间上的边值问题定为不动点问题,构造了基于Schauder不动点定理的数值验证方法。我们显示了由于不符合P_1有限元函数的不连续性而出现的边界积分的构造性不等式。最后,我们给出一个数值例子来说明我们提出的方法效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号