首页> 外文会议>Scale Space and Variational Methods in Computer Vision; Lecture Notes in Computer Science; 4485 >Uniform and Textured Regions Separation in Natural Images Towards MPM Adaptive Denoising
【24h】

Uniform and Textured Regions Separation in Natural Images Towards MPM Adaptive Denoising

机译:MPM自适应降噪的自然图像中均匀和纹理区域的分离

获取原文
获取原文并翻译 | 示例

摘要

Natural images consist of texture, structure and smooth re gions and this makes the task of filtering challenging mainly when it aims at edge and texture preservation. In this paper, we present a novel adap tive filtering technique based on a partition of the image to "noisy smooth zones" and "texture or edge + noise" zones. To this end, an analysis of local features is used to recover a statistical model that associates to each pixel a probability measure corresponding to a membership degree for each class. This probability function is then encoded in a new de noising process based on a MPM (Marginal Posterior Mode) estimation technique. The posterior density is computed through a non parametric density estimation method with variable kernel bandwidth that aims to adapt the denoising process to image structure. In our algorithm the selection of the bandwidth relies on a non linear function of the mem bership probabilities. Encouraging, experimental results demonstrate the potential of our approach.
机译:自然图像由纹理,结构和平滑区域组成,这使得过滤任务主要是针对边缘和纹理保留而具有挑战性。在本文中,我们提出了一种新颖的自适应滤波技术,该技术基于将图像划分为“嘈杂的平滑区域”和“纹理或边缘+噪声”区域。为此,使用局部特征分析来恢复统计模型,该统计模型将与每个像素相关的概率度量与每个像素相关联。然后,基于MPM(边缘后验模式)估计技术在新的降噪过程中对该概率函数进行编码。通过具有可变内核带宽的非参数密度估计方法来计算后验密度,该方法旨在使去噪过程适应图像结构。在我们的算法中,带宽的选择取决于成员概率的非线性函数。令人鼓舞的实验结果证明了我们方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号