首页> 外文期刊>IEEE Transactions on Image Processing >Statistics of Natural Stochastic Textures and Their Application in Image Denoising
【24h】

Statistics of Natural Stochastic Textures and Their Application in Image Denoising

机译:自然随机纹理的统计及其在图像去噪中的应用

获取原文
获取原文并翻译 | 示例

摘要

Natural stochastic textures (NSTs), characterized by their fine details, are prone to corruption by artifacts, introduced during the image acquisition process by the combined effect of blur and noise. While many successful algorithms exist for image restoration and enhancement, the restoration of natural textures and textured images based on suitable statistical models has yet to be further improved. We examine the statistical properties of NST using three image databases. We show that the Gaussian distribution is suitable for many NST, while other natural textures can be properly represented by a model that separates the image into two layers; one of these layers contains the structural elements of smooth areas and edges, while the other contains the statistically Gaussian textural details. Based on these statistical properties, an algorithm for the denoising of natural images containing NST is proposed, using patch-based fractional Brownian motion model and regularization by means of anisotropic diffusion. It is illustrated that this algorithm successfully recovers both missing textural details and structural attributes that characterize natural images. The algorithm is compared with classical as well as the state-of-the-art denoising algorithms.
机译:自然随机纹理(NST)以其精细的细节为特征,容易受到伪影的破坏,这些伪影是在图像获取过程中由于模糊和噪声的综合影响而引入的。尽管存在许多成功的图像还原和增强算法,但基于合适的统计模型的自然纹理和纹理图像的还原仍有待进一步改进。我们使用三个图像数据库检查了NST的统计特性。我们表明,高斯分布适用于许多NST,而其他自然纹理可以通过将图像分为两层的模型适当地表示。这些层中的一层包含平滑区域和边缘的结构元素,而另一层包含统计上的高斯纹理细节。基于这些统计特性,提出了一种基于补丁的分数布朗运动模型,并通过各向异性扩散进行正则化,对包含NST的自然图像进行去噪的算法。说明了该算法成功地恢复了缺失的纹理细节和表征自然图像的结构属性。将该算法与经典算法和最新的去噪算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号