首页> 外文会议>Rough sets and current trends in soft computing >Using Imprecise Probabilities to Extract Decision Rules via Decision Trees for Analysis of Traffic Accidents
【24h】

Using Imprecise Probabilities to Extract Decision Rules via Decision Trees for Analysis of Traffic Accidents

机译:使用不精确概率通过决策树提取决策规则以分析交通事故

获取原文
获取原文并翻译 | 示例

摘要

The main aim of this study is focused on the extraction or obtaining of important decision rules (DRs) using decision trees (DTs) from traffic accidents' data. These decision rules identify patterns related with the severity of the accident. In this work, we have incorporated a new split criterion to built decision trees in a method named Information Root Node Variation (IRNV) used for extracting these DRs. It will be shown that, with the adding of this criterion, the information obtained from the method is improved trough new and different decision rules, some of them use different variables than the ones obtained with the original method.
机译:这项研究的主要目的是利用交通事故数据中的决策树(DT)提取或获取重要的决策规则(DR)。这些决策规则确定与事故严重性相关的模式。在这项工作中,我们采用了一种称为信息根节点变化(IRNV)的方法来合并新的拆分准则,以建立决策树,该方法用于提取这些DR。可以看出,通过增加该标准,通过新的决策规则改进了从该方法获得的信息,其中一些使用的变量与原始方法获得的变量不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号