首页> 外文会议>IEEE International Conference on Robotics and Automation;ICRA '09 >Synthesizing a desired trajectory and sensory feedback control laws for an origami-folding robot based on the statistical characteristics of direct teaching by a human
【24h】

Synthesizing a desired trajectory and sensory feedback control laws for an origami-folding robot based on the statistical characteristics of direct teaching by a human

机译:基于人类直接示教的统计特征,为折纸折叠机器人合成所需的轨迹和感觉反馈控制律

获取原文

摘要

In this paper, a novel method to synthesize a desired trajectory and sensory feedback control laws for robots based on the statistical characteristics of direct teaching data by a human is proposed. This work was motivated by a poor performance of an origami-folding robot developed by the authors. Since the robot simply replayed a given trajectory without sensory feedback control, it often failed in folding due to the fluctuation of origami paper behaviors. To model the statistical characteristics of the demonstrated motions by a human, a hidden Markov model (HMM) is employed. A nominal desired trajectory is obtained by temporally normalizing and spatially averaging the demonstrated motions in a statistical manner. Sensory feedback control laws are then synthesized based on the output probability density function parameters of the HMM. Considering the velocity variance and the canonical correlation between velocity and force of the teaching data, important motion segments are extracted and the feedback control is applied only for those segments. The proposed method was applied to the origami-folding robot and experimental results showed that the success rate and the folding quality of "Valley-fold" were improved. Although the demonstrated task is very specific, the proposed method has generality to be applied to other tasks.
机译:在本文中,提出了一种基于人的直接教学数据的统计特征来合成机器人的期望轨迹和感觉反馈控制律的新方法。这项工作是由作者开发的折纸折叠机器人性能不佳引起的。由于机器人只是简单地重播给定的轨迹而没有感觉反馈控制,因此由于折纸行为的波动,机器人经常无法折叠。为了对人类演示动作的统计特性进行建模,采用了隐马尔可夫模型(HMM)。通过以统计方式在时间上对所展示的运动进行归一化和空间平均,可以获得标称的期望轨迹。然后,基于HMM的输出概率密度函数参数来合成感官反馈控制律。考虑到速度方差以及教学数据的速度和力之间的典范相关性,提取了重要的运动段,并将反馈控制仅应用于这些段。将该方法应用于折纸机器人,实验结果表明,“折谷”的成功率和折叠质量得到了提高。尽管所演示的任务非常具体,但所提出的方法具有通用性,可应用于其他任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号