首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach
【24h】

Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach

机译:基于Tsallis熵和特征选择方法的GRNs推断分析。

获取原文
获取原文并翻译 | 示例

摘要

An important problem in the bioinformatics field is to understand how genes are regulated and interact through gene networks. This knowledge can be helpful for many applications, such as disease treatment design and drugs creation purposes. For this reason, it is very important to uncover the functional relationship among genes and then to construct the gene regulatory network (GRN) from temporal expression data. However, this task usually involves data with a large number of variables and small number of observations. In this way, there is a strong motivation to use pattern recognition and dimensionality reduction approaches. In particular, feature selection is specially important in order to select the most important predictor genes that can explain some phenomena associated with the target genes. This work presents a first study about the sensibility of entropy methods regarding the entropy functional form, applied to the problem of topology recovery of GRNs. The generalized entropy proposed by Tsallis is used to study this sensibility. The inference process is based on a feature selection approach, which is applied to simulated temporal expression data generated by an artificial gene network (AGN) model. The inferred GRNs are validated in terms of global network measures. Some interesting conclusions can be drawn from the experimental results, as reported for the first time in the present paper.
机译:生物信息学领域的一个重要问题是了解基因如何通过基因网络进行调控和相互作用。这些知识可能对许多应用程序有帮助,例如疾病治疗设计和药物开发目的。因此,发现基因之间的功能关系,然后根据时间表达数据构建基因调控网络(GRN)非常重要。但是,此任务通常涉及具有大量变量和少量观测值的数据。这样,就有强烈的动机使用模式识别和降维方法。特别地,特征选择特别重要,以便选择可以解释与目标基因相关的某些现象的最重要的预测基因。这项工作提出了有关熵函数形式的熵方法敏感性的第一项研究,该方法适用于GRN的拓扑恢复问题。 Tsallis提出的广义熵用于研究这种敏感性。推理过程基于特征选择方法,该方法应用于由人工基因网络(AGN)模型生成的模拟时间表达数据。推断的GRN在全球网络指标方面得到了验证。从实验结果中可以得出一些有趣的结论,这是本文的首次报道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号