首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >The Multi-level Learning and Classification of Multi-class Parts-Based Representations of U.S. Marine Postures
【24h】

The Multi-level Learning and Classification of Multi-class Parts-Based Representations of U.S. Marine Postures

机译:美国海洋姿态基于零件的多类表示的多层次学习和分类

获取原文
获取原文并翻译 | 示例

摘要

This paper primarily investigates the possibility of using multi-level learning of sparse parts-based representations of US Marine postures in an outside and often crowded environment for training exercises. To do so, the paper discusses two approaches to learning parts-based representations for each posture needed. The first approach uses a two-level learning method which consists of simple clustering of interest patches extracted from a set of training images for each posture, in addition to learning the nonparametric spatial frequency distribution of the clusters that represents one posture type. The second approach uses a two-level learning method which involves convolving interest patches with filters and in addition performing joint boosting on the spatial locations of the first level of learned parts in order to create a global set of parts that the various postures share in representation. Experimental results on video from actual US Marine training exercises are included.
机译:本文主要研究在外部且经常拥挤的环境中使用基于稀疏零件的美国海军陆战队姿态的多层次学习进行训练的可能性。为此,本文讨论了两种学习每种姿势所需的基于零件的表示的方法。第一种方法使用两级学习方法,该方法包括对每个姿势从一组训练图像中提取的兴趣块进行简单聚类,以及学习表示一个姿势类型的聚类的非参数空间频率分布。第二种方法使用两级学习方法,其中包括将兴趣斑块与滤波器进行卷积,此外还对学习的零件的第一级的空间位置执行联合增强,以创建各种姿势共享的整体零件集合。包括来自美国海军陆战队实际训练视频的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号