首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Learning Parts-Based and Global Representation for Image Classification
【24h】

Learning Parts-Based and Global Representation for Image Classification

机译:学习基于零件的全局表示法进行图像分类

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF), known as a famous matrix factorization technique, has been widely used in pattern recognition and computer vision. NMF represents the input data matrix as a product of two nonnegative factors. As NMF is based on the Euclidean distance, which is sensitive to noise or errors in the data, some robust NMF methods are proposed. Mainly focusing on parts-based representation, these robust NMF methods often neglect global representation of data. In fact, the global geometry information of data is more robust than the local information about the noisy data in terms of image classification. In order to effectively improve the robustness of NMF and learn part-based and global representation of the data, a novel method low-rank nonnegative factorization (LRNF) is proposed in this paper. First, we assume that the data are grossly corrupted, and the$L_{1} $norm is used as a sparse constraint on the assumed noise matrix. Then, LRNF learns a low-rank matrix with the global representation ability. Finally, we make a nonnegative factorization of the learned low-rank matrix. We can obtain a base matrix, which preserves locality and globality properties of the data in the meantime. Extensive experiments have been conducted on nine real-world image databases to verify the performance of the proposed LRNF method by comparing with the state-of-the-art algorithms on robust dimensionality reduction.
机译:非负矩阵分解(NMF),众所周知的矩阵分解技术,已被广泛用于模式识别和计算机视觉。 NMF将输入数据矩阵表示为两个非负因子的乘积。由于NMF基于对数据中的噪声或错误敏感的欧几里德距离,因此提出了一些健壮的NMF方法。这些健壮的NMF方法主要集中在基于零件的表示上,通常会忽略数据的整体表示。实际上,就图像分类而言,数据的全局几何信息比有关嘈杂数据的本地信息更健壮。为了有效地提高NMF的鲁棒性并学习数据的基于局部和全局表示,本文提出了一种新的方法低秩非负因式分解(LRNF)。首先,我们假设数据已严重损坏,并且 n $ L_ {1} $ nnorm用作对假定的噪声矩阵的稀疏约束。然后,LRNF学习具有全局表示能力的低秩矩阵。最后,我们对学习的低秩矩阵进行非负因式分解。我们可以获得一个基本矩阵,该矩阵同时保留了数据的局部性和全局性。已与九个真实世界的图像数据库进行了广泛的实验,以通过与鲁棒降维方面的最新算法进行比较来验证所提出的LRNF方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号