机译:学习基于零件的全局表示法进行图像分类
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China;
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China;
School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, China;
Biometrics Research Center, The Hong Kong Polytechnic University, Hung Hom, Hong Kong;
Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong;
Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China;
Robustness; Sparse matrices; Matrix decomposition; Image classification; Manifolds; Euclidean distance; Geometry;
机译:非负稀疏自动编码器在线学习和通用化基于零件的图像表示
机译:基于全局空间和地方光谱相似性的歧管学习组稀疏表示的高光谱图像分类
机译:使用全局正则化原型表示和近似解对高光谱图像进行快速分类
机译:美国海洋姿势多级零件表示的多级学习与分类
机译:图像集分类和对应估计的稀疏表示和特征学习
机译:合成孔径雷达(SAR)目标图像分类的两阶段多任务表示学习
机译:一种用于学习地形上基于零件的视觉皮层中物体表示的模型:地形非负矩阵分解